Московский инженерно-физический институт Лицей № 1511 при МИФИ

СБОРНИК ЗАДАЧ ПО ФИЗИКЕ

Для 10 класса физико-математического лицея

Под редакцией Н.А.Добродеева

Москва 2008

УДК 53(075.4) ББК 22.3 С 23

Сборник задач по физике для 10-го класса физико-математического лицея / Под ред. Н.А.Добродеева. Изд.3-е, переработанное и дополненное. М.:МИФИ, 2008.-88c.

Авторы: В.В. Грушин, А.Я. Диденко, Н.А. Добродеев, Р.В. Коноплич, Д.В. Храмченков

Сборник содержит задачи по механике, молекулярной физике и термодинамике, и электричеству в соответствии с программой 10-го класса физико-математического лицея при МИФИ. Задачи расположены по темам в соответствии с календарным планом занятий. В сборник включены задачи, соответствующие целям обучения и подготовки к поступлению в МИФИ.

Рекомендовано Редсоветом МИФИ

СОДЕРЖАНИЕ

1. Прямолинейное движение	4
2. Кинематика криволинейного движения	7
3. Законы Ньютона	9
4. Динамика криволинейного движения	12
5. Закон сохранения импульса	14
6. Работа, мощность, энергия	17
7.Закон сохранения энергии	20
8.Статика. Гидростатика	23
9.Основы молекулярной физики	26
10. Внутренняя энергия. Теплота. Работа	29
11. Закон сохранения энергии	
в тепловых процессах	32
12. Реальные газы. Насыщенный пар.	
Конденсация и испарение	35
13. Жидкости, плавление и кристаллизация.	
Свойства твердых тел	38
14. Электрический заряд. Закон Кулона	41
15. Напряженность электрического поля	43
16. Потенциал электрического поля	46
17. Проводники и диэлектрики	
в электрическом поле	49
18. Конденсаторы	52
19. Постоянный ток	55
20. Разветвленные и замкнутые цепи	59
21. Работа и мощность тока	62
22. Магнитное поле	65
23. Движение заряженных частиц	
в электрическом и магнитном полях	69
24. Электромагнитная индукция	71
25. Электрический ток в различных средах	75
Ответы	78
Календарный план занятий	85

1.ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ

- **1.1.** Два поезда движутся навстречу друг другу: один со скоростью $v_1 = 36$ км/ч, другой со скоростью $v_2 = 54$ км/ч. Пассажир в первом поезде замечает, что второй поезд проходит мимо него за время t = 6 с. Какова длина L второго поезда?
- **1.2.** Из пунктов А и В, расстояние между которыми L, одновременно начали двигаться два автомобиля: первый со скоростью v_1 , второй со скоростью v_2 . Определить, через какое время t_x они встретятся, а также расстояние d от пункта A до места встречи.
- **1.3.** По двум взаимно перпендикулярным дорогам движутся равномерно два автомобиля со скоростями $v_1 = 72$ км/ч и $v_2 = 54$ км/ч. На каком расстоянии L друг от друга окажутся автомобили через время t = 10 мин после встречи у перекрестка?
- **1.4.** Водитель заметил, что капли дождя, падающие отвесно относительно Земли, перестают падать на заднее стекло после достижения автомобилем скорости $v_0 = 60$ км/ч. Зная, что стекло наклонено под углом $\alpha = 45^{\circ}$ к горизонту, найдите скорость u капель дождя относительно Земли.
- **1.5.** Мяч, движущийся .со скоростью v = 12 м/с, ударяется о ногу футболиста. С какой скоростью u должна двигаться нога футболиста, чтобы в результате удара мяч остановился? Считать массу мяча пренебрежимо малой, а удар абсолютно упругим.
- **1.6.** Определить наименьшую скорость v лодки относительно воды, при которой лодка может пересечь реку под углом $\alpha = 60^{\circ}$ к направлению течения. Скорость течения u = 3 км/ч.
- **1.7.** Автомобиль проехал первую половину пути со скоростью $v_1 = 40$ км/ч, вторую со скоростью $v_2 = 60$ км/ч. Найти среднюю скорость v_{cp} на всем пройденном пути.
- **1.8.** Самолет летит из пункта A в пункт B и возвращается назад в пункт A. Скорость самолета в безветренную погоду равна v. Найти отношение средних скоростей всего перелета для двух случаев, когда во время полета дует ветер со скоростью u: а) перпендикулярно линии AB; б) вдоль линии AB.

- **1.9.** Две частицы движутся с постоянными скоростями v_1 и v_2 по двум взаимно перпендикулярным прямым к точке их пересечения О. В момент t=0 частицы находились на расстояниях l_1 и l_2 от точки О соответственно. Через какое время Δt после этого расстояние между частицами станет наименьшим?
- **1.10.**В точках A и B находятся лодка и катер, движущиеся с заданными постоянными скоростями $V_{\mathcal{I}}$ и $V_{\mathcal{K}}$ в направлениях, показанных на рис. 1.1. Определить графически, каким будет наименьшее расстояние между лодкой и катером.

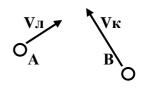
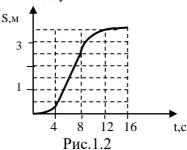
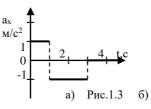
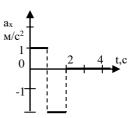
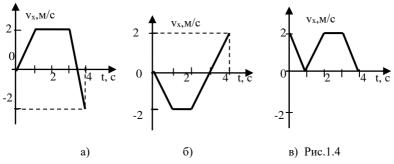



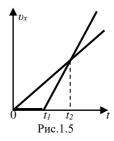
Рис.1.1


1.11. Точка движется по прямой в одну


сторону. На рис. 1.2 показан график пройденного ею пути s в зависимости от времени t. Найти с помощью этого графика среднюю скорость v_{cp} точки за время $t_{\rm M}=16$ с, максимальную скорость $v_{\rm M}$ и момент времени $t_{\rm X}$, когда мгновенная скорость равна средней скорости за первые $t_{\rm X}$ секунд.

- **1.12.**Санки съехали с горы длиной L=40 м за время $t_x=10$ с, а затем проехали по горизонтальному участку еще l=20 м до остановки. Найти скорость v в конце горы, общее время движения T, среднюю скорость v_{cp} на всем пути.
- **1.13.**По графикам $a_x = a_x(t)$ для прямолинейного движения


материальной точки построить графики зависимости $v_x = v_x(t)$, считая, что в начальный момент вре-


мени t = 0 скорость точки равна нулю (рис. 1.3).

1.14. Графики зависимости проекции скорости для прямоли-

нейного движения некоторого тела от времени t изображены на рис.1.4. Начертить графики зависимости проекции ускорения a_x , координаты тела x и пройденного пути s от времени в течение первых четырех секунд.

1.15.На рис.1.5 даны графики зависимости от времени скоростей для двух точек, движущихся по одной прямой из одного и того же начального положения. В какой момент времени T точки встретятся? Построить графики зависимости координат тел от времени.

- **1.16.** В момент t = 0 точка вышла из начала координат вдоль оси 0x. Проекция ее скорости меняется по закону $v_x = v_0 (1 t/\tau)$, где $v_0 = 10$ см/с модуль начальной скорости. Найти: а) координату x точки в момент времени $t_1 = 6$ с; б) путь s, пройденный точкой за первые $t_2 = 8$ с.
- **1.17.** Человек движется вдоль прямой дороги со скоростью $v_1 = 3.6$ км/ч. Его обгоняет автомобиль, движущийся со скоростью $v_2 = 72$ км/ч. Спустя время $t_1 = 1$ мин после этого автомобиль начинает тормозить с постоянным ускорением a = 2 м/с² до полной остановки. Определить расстояние s между человеком и автомобилем через $t_2 = 5$ мин после обгона.
- **1.18.** Автобус, двигаясь прямолинейно со скоростью v = 18 км/ч, проехал мимо остановки. Человек, стоявший на

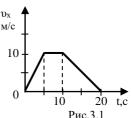
остановке, побежал за автобусом, двигаясь равноускоренно. С каким ускорением a должен бежать человек, чтобы догнать автобус на расстоянии s=100 м от остановки? Какую скорость v_I будет иметь человек в этот момент?

- **1.19.** Тело брошено вертикально вверх с горизонтальной поверхности и дважды проходит через точку на высоте h. Промежуток между этими моментами равен Δt . Найти начальную скорость v_0 и полное время T движения.
- **1.20.**Одно тело брошено вертикально вверх с начальной скоростью v_0 , другое падает с высоты H_0 без начальной скорости. Движения начались одновременно и происходят по одной прямой. Найти зависимость расстояния r между телами от времени t.
- **1.21.**Сколько времени T падало тело, если за последние $t_n = 2$ с оно прошло путь s = 60 м?
- **1.22.**За какое время t_n тело, свободно падающее без начальной скорости, проходит n-й сантиметр своего пути?
- **1.23.**С высокой башни друг за другом бросают два тела с одинаковыми скоростями v_0 . Первое тело бросают вверх; спустя время τ бросают второе вертикально вниз. Определить скорость v тел относительно друг друга и расстояние r между ними в момент времени $t > \tau$.

2.КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ

- **2.1.** Тело брошено с высоты H=5 м горизонтально со скоростью $v_0=6$ м/с. Найти величину скорости v и угол β между вектором скорости и горизонтальной поверхностью в момент паления тела на землю.
- **2.2.** Снаряд, вылетевший из орудия под некоторым углом к горизонту, находился в полете время $t_n = 12$ с. Какой наибольшей высоты H достиг снаряд?
- **2.3.** Два тела брошены под углами $\alpha_1 = 30^\circ$ и $\alpha_2 = 60^\circ$ к горизонту с одинаковой по величине начальной скоростью. Найти отношения высот подъема H_1/H_2 и дальностей полета L_1/L_2 .
- **2.4.** Два тела бросили одновременно из одной точки: одно вертикально вверх, другое под углом $\alpha = 60^{\circ}$ к горизонту.

Начальная скорость каждого тела $v_0 = 25$ м/с. Найти расстояние r между телами через время t = 1,7 с.


- **2.5.** Под углом $\alpha = 60^{\circ}$ к горизонту брошено тело с начальной скоростью $v_0 = 20$ м/с. Через какое время t_x тело будет двигаться под углом $\beta = 45^{\circ}$ к горизонту?
- **2.6.** Цель, находящаяся на холме, видна с места расположения орудия под углом $\alpha=30^\circ$ к горизонту. Расстояние по горизонтали до основания холма L=1 км. Стрельба производится под углом $\beta=60^\circ$ к горизонту. Какова должна быть начальная скорость v_0 , чтобы снаряды попадали в цель?
- **2.7.** Тело падает с высоты H = 2 м на наклонную плоскость. Через какое время t_x после отражения тело снова упадет на наклонную плоскость? Считать удар тела о плоскость абсолютно упругим.
- **2.8.** Воздушный шар поднимается с поверхности Земли с постоянной вертикальной скоростью v_0 . Из-за ветра шар приобретает горизонтальную компоненту скорости $v_x = by$, где b постоянная, y высота подъема. Записать уравнение траектории шара.
- **2.9.** Какова линейная скорость v точек земной поверхности на широте Санкт-Петербурга ($\varphi=60^\circ$) при суточном вращении Земли, радиус которой R=6400 км?
- **2.10.** Во сколько раз n угловая скорость вращения минутной стрелки часов больше угловой скорости часовой стрелки?
- **2.11.** Радиус-вектор некоторой точки меняется со временем по закону $\vec{r} = ct\vec{i} bt^2\vec{j}$, где c, b положительные постоянные; \vec{i} , \vec{j} орты осей x и y. Найти: а) уравнение траектории точки y = y(x) и изобразить эту траекторию; б)зависимости от времени векторов скорости, ускорения и их модулей; в) зависимости от времени угла между векторами ускорения и скорости.
- **2.12.** Два шарика движутся с постоянными угловыми скоростями $\omega_1 = 0.2$ рад/с и $\omega_2 = 0.1$ рад/с по окружности. Считая, что движение началось из одной точки, определить, через какое время t_x шарики столкнутся.

- **2.13.** Два шарика движутся с постоянными угловыми скоростями по окружности. Считая, что движение началось из одной точки, определить, при каком отношении угловых скоростей столкновение шариков произойдет в точке старта.
- **2.14.** Точка движется по окружности радиуса R=20 см равноускоренно с тангенциальным ускорением $a_{\tau}=5$ см/с. Через какое время t_x (после начала движения) нормальное ускорение будет в n=2 раза больше тангенциального? Начальная скорость равна нулю.
- **2.15.**Поезд выезжает на закругленный участок пути с начальной скоростью $v_0 = 54$ км/ч и проходит путь s = 600 м за время t = 30 с. Радиус закругления R = 1 км. Определить скорость v и полное ускорение a в конце этого пути.
- **2.16.** Точка начинает двигаться по окружности со скоростью v=bt, где $b=0.5\,$ м/с². Найти полное ускорение a точки в момент, когда она пройдет $n=0.1\,$ длины окружности после начала движения.
- **2.17.** Диск радиуса R катится без скольжения с постоянной скоростью v. Найти геометрическое место точек на диске, которые в данный момент имеют скорость v.
- **2.18.** По горизонтальной плоскости катится без скольжения с постоянной скоростью v_C обруч радиуса R. Найти скорость v и ускорение a точки обруча в зависимости от угла ϕ между вертикалью и прямой, проведенной между точкой касания обруча с плоскостью и данной точкой обруча.
- **2.19.** Цилиндр радиуса R помещен между двумя параллельными рейками. Рейки движутся в одну сторону со скоростями v_1 и v_2 . Определить угловую скорость вращения цилиндра ω и скорость v_C его центра, если проскальзывание отсутствует.

3.3АКОНЫ НЬЮТОНА

3.1. На первоначально покоящееся тело массы m=0,2 кг действует в течение времени t=5 с сила F=0,1 Н. Какую скорость v приобретает тело и какой путь s пройдет оно за указанное время?

3.2. График зависимости проекции скорости тела от времени приведен на рис. 3.1. Построить график проекции единственной силы F_x , действующей на тело массы m=2 кг, в зависимости от времени.

3.3. Два тела, массы которых $m_1 = 50$ г и $m_2 = 100$ г, связанные нитью, лежат на гладкой горизонтальной поверхности. С какой силой F, направленной параллельно нити, можно тянуть пер-

тью, лежат на гладкои горизонтальнои поверхности. С какои силой F, направленной параллельно нити, можно тянуть первое тело, чтобы нить, способная выдержать натяжение $T_0 = 0.5$ H, не оборвалась?

- **3.4.** На горизонтальной доске лежит груз. С каким ускорением a в горизонтальном направлении должна двигаться доска, чтобы груз соскользнул с нее? Коэффициент трения между доской и грузом $\mu=0,2$.
- 3.5. Два тела массы $m_1 = 50$ г и $m_2 = 100$ г связаны нитью и движутся по гладкой горизонтальной поверхности под действием силы F = 10 H, приложенной к более

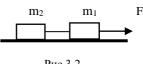
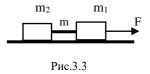
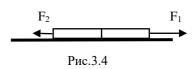
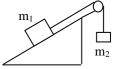



Рис.3.2


легкому телу (рис.3.2). Найдите ускорения тел a_1 и a_2 и силу натяжения нити T.

3.6. Два тела массы $m_1 = 1$ кг и $m_2 = 3$ кг соединены стержнем массы m = 1 кг и движутся по гладкой горизонтальной поверхности под действием силы F = 10 Н, приложенной к первому телу (рис. 3.3). Определите

ускорения a_1 и a_2 тел и силы T_1 и T_2 , с которыми действует стержень на тела m_1 и m_2 соответственно.


3.7. На стержень массы m = 1 кг, лежащий на гладкой горизонтальной поверхности, (рис.3.4) действуют две силы $F_1 = 10$ Н и $F_2 = 5$ Н, прило-

женные к его торцам и направленные горизонтально. Определить величину ускорения стержня a и силу N, с которой правая половина стержня действует на левую.

- **3.8.** По горизонтальной плоскости начинает двигаться тело массы M=5 кг под действием силы F=30 H, приложенной вверх под углом $\alpha=30^{\circ}$ к горизонту. Коэффициент трения $\mu=0,2$. Вычислить скорость v тела через t=10 с после начала действия силы.
- **3.9.** Тело движется равномерно по горизонтальной плоскости под действием силы F. Коэффициент трения $\mu = 0,6$. Какой угол α с горизонтом должна составить сила, чтобы ее значение было минимальным?
- **3.10.** Лифт имеет массу M= $3\cdot10^3$ кг. Найти силу натяжения троса T, если лифт:
 - а. на подъеме останавливается с ускорением a=0,49 м/с²;
 - b. начинает опускаться с ускорением $a = 0.49 \text{ м/c}^2$;
 - с. движется вверх с постоянной скоростью.
- **3.11.** На концах нити, перекинутой через висящий блок, на высоте $H=2\,$ м от пола находятся два

груза массами $m_1 = 100$ г и $m_2 = 200$ г. В начальный момент грузы покоятся. За какое время т второй груз опустится на пол?

3.12. Два тела массой $m_1 = 2$ кг и $m_2 = 1$ кг связаны нитью, перекинутой

Рис.3.5

через блок(рис.3.5). Тело m_1 находится на наклонной плоскости с углом наклона $\alpha=20^\circ$; коэффициент трения о плоскость $\mu=0,1$. Тело m_2 висит на нити. Найти ускорение a_2 второго тела .

- **3.13.** Найти ускорения a_1 и a_2 масс m_1 и m_2 и силу натяжения T нити в системе, изображенной на рис. 3.6.
- **3.14.** Система из двух грузов массы m_1 и m_2 находится на опоре, которая движется с ускорением a (рис.3.7). Найти

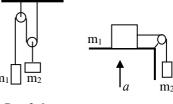


Рис.3.6

Рис.3.7

натяжение T нити, если коэффициент трения равен μ .

- **3.15.** Тело пустили снизу вверх по наклонной плоскости, составляющей угол $\alpha=15^\circ$ с горизонтом. Найти коэффициент трения μ , если время подъема тела оказалось в n=2 раза меньше времени спуска.
- **3.16.** Тело массы M=0,5 кг лежит на горизонтальной плоскости. Коэффициент трения $\mu=0,1$. На тело действует горизонтальная сила F. Определить силу трения F_{mp} для трех случаев: 1) F=0,25 H; 2) F=0,5 H; 3) F=2 H.
- **3.17.** Тело находится на наклонной плоскости. Построить график зависимости силы трения F_{mp} о плоскость от угла α наклона плоскости к горизонту.
- **3.18.** Сила трения капель дождя о воздух пропорциональна квадрату скорости и квадрату радиуса капли $F = \beta v^2 R^2$. Какие капли, крупные или мелкие, падают на землю с большей скоростью?
- **3.19.** Два одинаковых шарика связаны нитью, перекинутой через блок, причем один из шариков погружен в сосуд с жидкостью. С какой установившейся скоростью v будут двигаться шарики, если известно, что установившаяся скорость падения одного шарика в той же жидкости равна v_0 . Силу сопротивления считать пропорциональной скорости. Плотность жидкости ρ_0 , плотность материала шариков ρ .
- **3.20.** С какой силой F следует прижимать тело массы m=6 кг к вертикальной стенке, чтобы движение тела было равномерным? Коэффициент трения скольжения тела о стенку $\mu=0,6$.

4. ДИНАМИКА КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ

- **4.1.** Тело массы m находится на горизонтальном диске на расстоянии r от оси вращения. Построить график зависимости силы трения F_{mp} , действующей на это тело, от угловой скорости ω вращения диска. Коэффициент трения μ .
- **4.2.** Автомобиль массой M=3 т движется с постоянной скоростью v=36 км/ч по мосту радиусом кривизны R=60 м. С какой силой F давит автомобиль на мост в тот момент, ко-

гда линия, соединяющая центр кривизны моста с автомобилем, составляет угол $\alpha=10^\circ$ с вертикалью, если: а) мост выпуклый; б) мост вогнутый?

- **4.3.** Через реку шириной l=100 м переброшен выпуклый мост, имеющий форму дуги окружности. Высшая точка моста поднимается над берегом на H=10 м. Максимально возможная нагрузка на мост в верхней точке F=4,5кН. При каких скоростях v автомобиль массой m=500 кг может переехать через мост, не разрушив его?
- **4.4.** Чему равен минимальный радиус дуги R ,по которой может поворачивать мотоциклист, если его скорость v=21 м/с, а коэффициент трения скольжения между шинами и дорогой $\mu=0,3$?
- **4.5.** Самолет совершает поворот, двигаясь по дуге окружности с постоянной скоростью v=360 км/ч. Определить радиус R этой окружности, если плоскость крыльев повернулась вокруг направления полета на угол $\alpha=10^\circ$.
- **4.6.** К краю диска радиуса R=10 см прикреплен шарик на нити длиной L=6 см. При вращении диска в горизонтальной плоскости нить отклоняется от вертикали на угол $\alpha=45^\circ$. Определить угловую скорость ω диска.
- **4.7.** Груз массы m=100 г, подвешенный на нити длиной L=1 м, отклонили от положения равновесия на некоторый угол и отпустили. Найти натяжение T нити в тот момент, когда груз будет иметь скорость v=3,1 м/с, а угол отклонения от вертикали $\alpha=60^\circ$.
- **4.8.** Шарик, подвешенный на нити длиной L=14 см, движется по окружности в горизонтальной плоскости с угловой скоростью $\omega=18,8$ рад/с. На какой угол α от вертикали при этом отклоняется нить?
- **4.9.** На легком горизонтальном стержне, вращающемся в горизонтальной плоскости, насажены два шара массами $m_1=1$ кг и $m_2=2$ кг на расстоянии $L_1=20$ см и $L_2=30$ см от оси вращения. Определить силы натяжения стержня. Стержень делает n=4 об/с. Ось вращения проходит через конец стержня.

- **4.10.** На какую величину Δg уменьшится ускорение силы тяжести на высоте h=20 км над поверхностью Земли, если ускорение на поверхности $g_0=9{,}81$ м/с, а радиус Земли R=6400 км.
- **4.11.** Определите, каково относительное изменение веса тела при переносе его с экватора Земли на полюс.
- **4.12.** Какой продолжительности T должны быть сутки на Земле, чтобы тела на экваторе не имели веса?
- **4.13.** Во сколько раз n период обращения спутника, движущегося на расстоянии r=21600 км от поверхности Земли, больше периода обращения спутника, движущегося на высоте h=600 км от поверхности?
- **4.14.** Найти массу Солнца M, зная постоянную тяготения G, период обращения T Земли вокруг Солнца и расстояние $L=1.5\cdot 10^{11}$ м от Земли до Солнца.
- **4.15.** Двойная звезда вращается вокруг общего центра масс с периодом T=10 земных суток. Массы отдельных звезд $M_I=10^{32}~\rm kr$ и $M_2=3\cdot 10^{32}~\rm kr$. Найти расстояние R между звездами.
- **4.16.** Вычислить плотность ρ шарообразной планеты, если спутник движется вокруг нее по круговой орбите с периодом T=4 ч на расстоянии от поверхности планеты, составляющем n=1/2 часть ее радиуса.
- **4.17.** На какую высоту H (отсчитывается от центра Земли) надо запустить спутник в экваториальной плоскости, чтобы он все время находился над одной и той же точкой земной поверхности?
- **4.18.** Какова первая космическая скорость v_I для планеты с такой же плотностью, как у Земли, но радиус которой в n=2 раза меньше, чем у Земли?

5.3АКОН СОХРАНЕНИЯ ИМПУЛЬСА

5.1. Определить величину изменения импульса $|\Delta p|$ шарика массы m = 50 г, движущегося со скоростью v = 2 м/с, при упругом ударе о неподвижную плоскость, составляющую с вектором скорости угол α , равный: a) 60° ; б) 90° .

- **5.2.** При движении тела массой m=1 кг вблизи поверхности Земли между точками траектории A и B величина изменения импульса тела $|\Delta \vec{p}| = 20 \; \text{H} \cdot \text{c}$. Найти время t_x полета между точками A и B. Сопротивлением воздуха пренебречь.
- **5.3.** Шарик массой m=10 г падает на горизонтальную плоскость с высоты $h_I=27$ см. Найти среднюю силу удара F в следующих случаях: а) удар шарика о плоскость абсолютно неупругий; б) удар абсолютно упругий; в) после удара шарик поднимается на высоту $h_2=12$ см. Во всех случаях длительность удара $\tau=0.03$ с.
- **5.4.** Поезд массой m=2000 т, двигаясь прямолинейно, увеличил скорость с $v_1=36$ км/ч до $v_2=72$ км/ч. Найти величину изменения импульса $|\overrightarrow{\Delta p}|$.
- **5.5.** Два тела, массы которых $m_1 = 2$ кг и $m_2 = 6$ кг, движутся навстречу друг другу со скоростями $v_0 = 2$ м/с каждое. С какой скоростью v и в какую сторону будут двигаться эти тела после абсолютно неупругого соударения?
- **5.6.** Снаряд массой m=20 кг, летевший горизонтально со скоростью v=500 м/с вдоль рельсов, попадает в платформу с песком массы M=10 т и застревает в песке. С какой скоростью u начнет двигаться платформа? Трением платформы о рельсы пренебречь.
- **5.7.** Платформа с закрепленным на ней орудием движется со скоростью $v_1 = 9$ км/ч. Общая масса M = 20 т. Из орудия выпущен снаряд массой m = 25 кг со скоростью $v_2 = 700$ м/с относительно центра масс. Определить скорость u платформы после выстрела, если: а) выстрел произведен по движению; б) против движения. Трением платформы о рельсы пренебречь.
- **5.8.** Определить время t_x падения тела массы M, если на половине пути в него попала горизонтально летящая пуля массы m. Время свободного падения тела с той же высоты равно t_0 . Рассмотреть также случай $M \ \square \ m$.
- **5.9.** Человек, стоящий на коньках на гладком льду, бросает вдоль льда камень массой m=0,5 кг. За время $\tau=2$ с камень переместился на расстояние s=20 м. С какой скоро-

- стью u начинает скользить конькобежец, если его масса $M=60~{\rm kr?}$
- **5.10.** От двухступенчатой ракеты, полная масса которой M=1000 кг, в момент достижения скорости $v_0=171$ м/с отделилась ее вторая ступень массы m=400 кг, скорость которой при этом увеличилась до $v_2=185$ м/с. С какой скоростью v_1 стала двигаться первая ступень ракеты? Скорости даны относительно наблюдателя, находящегося на Земле.
- **5.11.** Человек массой m=80 кг находится на корме неподвижной лодки массой M=400 кг. Затем человек переходит на нос лодки. Во сколько раз n расстояние, пройденное человеком относительно дна водоема, превосходит расстояние, пройденное лодкой?
- **5.12.** Две тележки, каждая массой M, движутся без трения с одинаковой скоростью v_0 . На задней тележке находится человек массы m. Человек прыгнул в переднюю тележку. Его скорость во время полета равна u относительно задней тележки. Какой стала скорость передней тележки v_1 ?
- **5.13.** Тележка массы M=120 кг движется по горизонтальным рельсам без трения со скоростью $v_0=6$ м/с. С тележки соскакивает человек массой m=80 кг под углом $\alpha=30^\circ$ к направлению ее движения. Скорость тележки уменьшается при этом до v=5 м/с. Какова скорость u человека относительно земли во время прыжка?
- **5.14.** Две тяжелые лодки движутся навстречу друг другу параллельным курсом. Когда лодки поравнялись, с одной из них на другую осторожно переложили груз массы $m=25~\rm kr$. После этого лодка, в которую переложили груз, остановилась, а вторая продолжала двигаться со скоростью $v=8~\rm m/c$. С какими скоростями v_1 и v_2 двигались лодки до встречи, если масса первой лодки $M=1000~\rm kr$?
- **5.15.** Ядро, летевшее в горизонтальном направлении со скоростью v=20 м/с, разорвалось на две части, массы которых $m_1=10$ кг и $m_2=5$ кг. Скорость второго осколка $v_2=90$ м/с и направлена так же, как и скорость ядра. Определить величину и направление скорости v_1 первого осколка.

- **5.16.** Движущееся тело распадается на два осколка с импульсами, модули которых p_1 и p_2 , а направлены они под углом θ друг к другу. Найти величину импульса p распавшегося тела.
- **5.17.** Снаряд, летевший горизонтально со скоростью v = 200 м/с, разрывается на две равные части, одна из которых после разрыва движется вертикально вниз со скоростью $v_l = 150$ м/с. Какое расстояние l по горизонтали пролетит второй осколок, если разрыв произошел на высоте R = 500 м?
- **5.18.** Снаряд вылетает из орудия под углом α к горизонту со скоростью v_0 . В верхней точке траектории снаряд разрывается на две равные части, причем скорости частей непосредственно после взрыва горизонтальны и лежат в плоскости траектории. Одна часть падает на расстоянии s от орудия по направлению выстрела. Определить расстояние L от орудия, на котором упадет вторая часть, если известно, что она упала дальше первой.

6. РАБОТА. МОЩНОСТЬ. ЭНЕРГИЯ

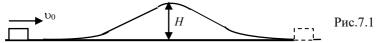
- **6.1.** Цепь лежит на плоскости. Найти работу A по подъему цепи, взятой за один конец, на высоту H=5 м. Длина цепи l=2 м, масса m=50 г. Высота отсчитывается от верхнего конца цепи.
- **6.2.** Цепь массы M и длины l лежит у прямой границы двух горизонтальных полуплоскостей перпендикулярно этой границе. Коэффициенты трения полуплоскостей с цепью соответственно равны μ_1 и μ_2 . Какую минимальную работу надо совершить, чтобы передвинуть цепь на вторую полуплоскость, прилагая горизонтально направленную силу?
- **6.3.** Тело массой m=2 кг брошено под углом к горизонту с высоты H=5 м с начальной скоростью $v_0=10$ м/с. Найти работу A сил сопротивления воздуха, если в момент падения на землю тело имеет скорость v=5 м/с.
- **6.4.** Шарик массой m = 100 г, подвешенный на нити длиной l = 40 см, описывает окружность в горизонтальной плоскости.

Какова кинетическая энергия K шарика, если во время его движения нить образует с вертикалью угол $\alpha = 60^{\circ}$?

- **6.5.** Для растяжения пружины из недеформированного состояния на $\Delta x_1 = 4$ мм необходимо совершить работу $A_1 = 0.02$ Дж. Какую работу A_2 надо совершить, чтобы из предыдущего положения растянуть эту пружину еще на $\Delta x_2 = 4$ мм?
- **6.6.** Тело массой m бросили под углом α к горизонту с начальной скоростью v_0 . Найти среднюю мощность < P >, развиваемую силой тяжести за все время движения тела, и мгновенную мощность P этой силы как функцию времени. **6.7.** Камень массы m = 200 г брошен с горизонтальной по-
- **6.7.** Камень массы m = 200 г брошен с горизонтальной поверхности под углом α к горизонту и упал на нее обратно на расстоянии s = 5 м через t = 1,2 с. Найти работу A, совершаемую при броске. Сопротивлением воздуха пренебречь.
- **6.8.** Снаряд при вертикальном выстреле достиг высшей точки полета H=3000 м и разорвался на две части, имеющие массы $m_1=3$ кг и $m_2=2$ кг. Осколки продолжают лететь по вертикали: первый вниз, второй вверх. Найти скорё

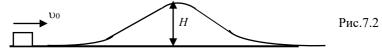
6.9. ,2 СИ ЯЫЫЫЯЫЯ042B+

- **6.10.** Зqqqq`=hgxzости осколков v_1 и v_2 через время $\tau=2$ с после разрыва, если их полная механическая энергия непосредственно после разрыва $E=0.25\,$ МДж. Потенциальная энергия отсчитывается от поверхности Земли.
- **6.11.** Тело массы m=1 кг брошено с начальной скоростью $v_0=19,6$ м/с под углом $\alpha=45^\circ$ к горизонту. Изобразить графики зависимости кинетической, потенциальной и полной механической энергий движения этого тела от времени.
- **6.12.** В поле тяжести на тело массой m в течение времени τ действуют силой F, направленной вертикально вверх. Изобразить график зависимости потенциальной энергии тела от времени.
- **6.13.** Автомобиль, имеющий массу m=1 т, трогается с места и, двигаясь равноускоренно, проходит путь s=20 м за время $\tau=2$ с. Какую полезную механическую мощность P развивает этот автомобиль в конце пути?


- **6.14.** Автомобиль массы M=2 т трогается с места и идет в гору, уклон которой $\alpha=0,02$. Пройдя расстояние s=100 м, он развивает скорость v=32,4 км/ч. Коэффициент сопротивления $\kappa=0,05$. Определить среднюю мощность $<\!P\!>$, развиваемую автомобилем ($\kappa=F_{conp}/Mg$).
- **6.15.** Самолет для взлета должен иметь скорость v=250 м/с. Длина пробега перед взлетом s=100 м. Какова мощность P моторов в момент взлета, если масса самолета m=1 т и коэффициент сопротивления $\kappa=0,02$? Считать движение самолета при разгоне равноускоренным.
- **6.16.** Разогнавшись, конькобежец некоторое время движется по горизонтальной ледяной дорожке равномерно. Затем, перестав отталкиваться, он, двигаясь равнозамедленно, проезжает до остановки путь $s=60\,\mathrm{m}$ в течение $t=25\,\mathrm{c}$. Масса конькобежца $m=50\,\mathrm{kr}$. Определить коэффициент трения μ и механическую мощность P, развиваемую конькобежцем при равномерном движении.
- **6.17.** Уклон участка шоссе $\alpha = 0.05$. Спускаясь под уклон при выключенном двигателе, автомобиль движется равномерно со скоростью v = 60 км/ч. Какую минимальную полезную мощность P должен развивать двигатель при движении в обратном направлении с той же скоростью? Масса автомобиля m = 1.5 т.
- **6.18.** На брусок массой m=1 кг, покоившийся на горизонтальной плоскости, действовали в течение времени t=10 с постоянной силой F=5 H, направленной вверх под углом $\alpha=30^\circ$ к горизонту. Найти работу A этой силы, если коэффициент трения между бруском и плоскостью $\mu=0,25$.
- **6.19.** Какую работу A совершит сила F = 30 Н при подъеме по наклонной плоскости груза массой m = 2 кг на высоту h = 2,5м с ускорением a = 10 м/с²? Сила действует параллельно наклонной плоскости, трением о плоскость пренебречь.
- **6.20.** Некоторая сила толкает тело массой m=16 кг вверх по наклонной плоскости длиной l=3,1 м и утлом наклона $\alpha=30^\circ$ к горизонту. Скорость тела у основания плоскости

была $v_0 = 0,6$ м/с, а у ее верхнего края - $v_I = 3,1$ м/с. Чему равна работа A, произведенная силой, если коэффициент трения $\mu = 0,1$?

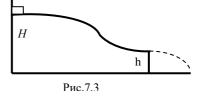
7.3АКОН СОХРАНЕНИЯ ЭНЕРГИИ


- **7.1.** Мяч падает вертикально с высоты H = 7,5 м на пол. Какую начальную скорость v_0 нужно сообщить мячу, чтобы после двух ударов о пол он поднялся до первоначальной высоты, если при каждом ударе мяч теряет $\eta = 40\%$ энергии?
- **7.2.** Между двумя брусками массы $m_1 = 2$ кг и $m_2 = 4$ кг сжата пружина до длины l = 7 см. Пружина удерживается в состоянии сжатия при помощи нити. Жесткость пружины k = 48 Н/м, начальная длина $l_0 = 15$ см. Нить пережигают. С какими скоростями v_1 и v_2 будут двигаться бруски после разлета? Трение и массу пружины не учитывать.
- **7.3.** Санки, движущиеся по горизонтальному льду со скоростью v, въезжают на асфальт. Считая, что длина полозьев санок равна l, а коэффициент их трения по асфальту равен μ , найти путь передка санок s, пройденный ими по асфальту, при условии, что s>l. Трением санок о лед пренебречь и считать, что масса санок распределена равномерно по длине полозьев.
- **7.4.** Конькобежец, разогнавшись до скорости v=27 км/ч, въезжает на ледяную гору. На каждую высоту H от начального уровня въедет конькобежец, если подъем горы составляет h=0.5 м на каждые s=10 м по горизонтали и коэффициент трения коньков о лед $\mu=0.02$?
- **7.5.** Санки съезжают с горы высотой H и углом наклона α и движутся далее по горизонтальному участку. Коэффициент трения на всем пути санок одинаков и равен μ . Определить путь s, который пройдут санки по горизонтальному участку до полной остановки.
- **7.6.** Неупругие шары массы $m_1 = 1$ кг и $m_2 = 2$ кг, двигаются навстречу друг другу со скоростями соответственно $v_1 = 1$ м/с и $v_2 = 2$ м/с. Найти изменение кинетической энергии ΔK системы при ударе.

- 7.7. Шайбу толкнули вверх по шероховатой наклонной плоскости с углом $\alpha = 30^{\circ}$ при основании с начальной скоростью $v_0 = 4$ м/с. Пройдя расстояние s = 1 м, шайба остановилась. Соскользнет ли она вниз?
- **7.8.** Человек массой M=80 кг, стоящий на коньках, бросает в горизонтальном направлении камень массы m=1,5 кг и откатывается при этом на расстояние l=2 м. Коэффициент трения коньков о лед $\mu=0,01$. Найти скорость камня u относительно человека сразу же после броска.
 - 7.9. На пути тела, движущегося по горизонтальной поверхно-

сти, находится незакрепленная горка высотой H=2 м. Масса горки в n=5 больше массы тела. При какой минимальной начальной скорости v_{θ} тело преодолеет горку? Считать, что тело движется, не отрываясь от горки (рис. 7.1). Трением пренебречь.

7.10. Тело массы m=1 кг скользит без трения по гладкой горизонтальной поверхности и въезжает на подвижную горку(рис. 7.2) массы M=5 кг. Высота горки H=1,2 м. Трение между горкой и основанием отсутствует. Найти конечные

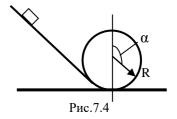


скорости тела v и горки v_c , если начальная скорость тела $v_0 = 5$ м/с, а горка первоначально покоится.

7.11. Тело соскальзывает с вершины гладкой горки, имеющей горизонтальный трамплин.

Высота горки H. При какой высоте h трамплина тело пролетит наибольшее расстояние по горизонтали (рис.7.3)?

7.12. Пуля, летящая горизонтально со скоростью $v=40\,\mathrm{m/c},$


попадает в брусок, подвешенный на нити длиной l=4 м, и за-

стревает в нем. Определить угол α , на который отклонился брусок, если масса пули $m_1 = 20$ г, а бруска - $m_2 = 5$ кг.

7.13. Пуля массы $m_I = 10$ г, летевшая горизонтально со скоростью $v_I = 600$ м/с, ударилась в подвешенный на длинной нити деревянный

брусок массы $m_2 = 0,5$ кг, и застряла в нем, углубившись на s = 10 см. Найти силу F сопротивления дерева движению пули, пренебрегая нагреванием тел.

7.14. Тело массой m совершает мертвую петлю, соскальзывая с высоты H. Определить, с какой силой F тело давит на опору в точке петли,

радиус которой составляет угол α с вертикалью (рис. 7.4). Трением пренебречь.

7.15. С какой наименьшей высоты H должно соскользнуть тело, чтобы совершить полный оборот по петле радиуса R (рис. 7.4)? Трением пренебречь.

7.16. Проволока изогнута по дуге окружности радиуса R (рис. 7.5). На проволоку надета бусинка, которая может без трения перемещаться вдоль проволоки. В начальный момент бусинка находилась внизу в точке О. Какую горизонтальную скорость v надо сообщить бусинке, чтобы, пройдя часть пути в воздухе, она попала на проволоку в точке В? Угол между BC (AC) и вертикалью равен α .

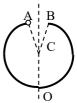


Рис.7.5

- **7.17.** На шар, лежащий на гладкой горизонтальной поверхности, налетает другой шар, движущийся горизонтально. Между шарами происходит упругий центральный удар. Построить график зависимости доли переданной энергии $y = E_1/E_0$ от отношения масс шаров $x = m_1/m_2$.
- **7.18.** При бомбардировке гелия альфа-частицами с кинетической энергией E_0 налетающая частица отклонилась на угол $\varphi = 60^\circ$ по отношению к направлению ее движения до столкновения. Считая удар абсолютно упругим, определить кинетическую энергию альфа-частицы E после столкновения.

- **7.19.** Два тела массой $m_1=1$ кг и $m_2=2$ кг движутся навстречу друг другу во взаимно перпендикулярных направлениях со скоростями $v_1=3$ м/с и $v_2=2$ м/с. Найти изменение внутренней энергии системы тел ΔU в результате абсолютно неупругого соударения.
- **7.20.** Пуля массы m, летевшая горизонтально с начальной скоростью v, пробивает один подвешенный груз массы m и застревает во втором, таком же. Пренебрегая временем взаимодействия пули с грузом, найти изменение механической энергии системы ΔE_1 в первый раз, если механическая энергия системы во второй раз уменьшилась на ΔE_2 .
- **7.21.** Шар, двигаясь по горизонтальной гладкой поверхности со скоростью v_0 , налетает на такой же покоящийся шар. Удар абсолютно упругий нецентральный. Найти угол α разлета шаров.

8.СТАТИКА. ГИДРОСТАТИКА

8.1. На кронштейне висит груз массой m = 90 кг (рис. 8.1).

Определить силы натяжения стержней AB и BC. Стержни легкие. Стержень AB горизонтален. Угол при вершине В равен $\beta=60^\circ$. В точках A, B и C шарниры.

- **8.2.** Два человека несут балку длиной L=5 м, причем один поддерживает ее на расстоянии $l_1=50$ см от конца, а другой на расстоянии $l_2=1$ м от другого конца. Определить, во сколько раз n нагрузка на второго человека превышает нагрузку на первого.
- **8.3.** Однородная цепочка длины l частично лежит на столе, частично свешивается с него. Какова максимальная длина l_l свешивающейся со стола части цепочки, если коэффициент трения между цепочкой и столом равен μ .
- **8.4.** К вертикальной гладкой стене в точке A на нити длиной l подвешен шар (рис. 8.2) массы m. Какова сила натяжения нити T и сила

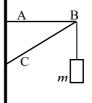


Рис.8.1

Рис.8.2

давления шара на стену F, если его радиус R? Трением о стену пренебречь.

- **8.5.** Каким должен быть минимальный коэффициент трения μ основания куба о горизонтальную плоскость, чтобы его можно было опрокинуть через ребро горизонтальной силой, приложенной к верхней грани? Чему должна быть равна приложенная сила F, если масса куба M?
- **8.6.** Колесо радиусом R и массой m стоит перед ступенькой высотой h < R. Какую наименьшую горизонтальную силу F надо приложить к оси колеса, чтобы оно могло подняться на ступеньку? Трением пренебречь.
- **8.7.** Лестница длиной l=3 м стоит, упираясь верхним закругленным концом в гладкую стену, а нижним в пол. Угол наклона лестницы к горизонту $\alpha=60^\circ$, ее масса m=15 кг. На лестнице на расстоянии a=1 м от ее верхнего конца стоит человек массы M=60 кг. С какой силой F давит на пол нижний конец лестницы?
- **8.8.** У стены стоит лестница. Коэффициент трения лестницы о стену $\mu_I = 0,4$, а о землю $\mu_2 = 0,5$. Определить наименьший угол α , который лестница может образовать с горизонтом, не соскальзывая.
- **8.9.** С какой минимальной горизонтальной силой F надо действовать на брусок массы m=1 кг, находящийся на наклонной

плоскости с углом наклона $\alpha = 30^{\circ}$, чтобы он покоился? Ко-

эффициент трения бруска о плоскость $\mu = 0.2$.

8.10. Определить графически положение центра тяжести плоского однородного листа, изображенного на рис. 8.3.

8.11. Определить расстояние между центром тяжести однородного диска радиусом R с вырезом в виде диска радиусом r и центром большого диска(рис.8.4). Расстояние между цен-

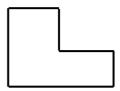


Рис.8.3

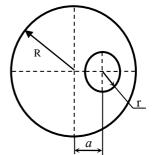
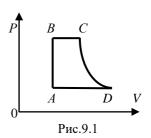


Рис.8.4


- трами диска и выреза равно a.
- **8.12.** Льдина, площадь которой S=1 м², а толщина H=0,4м, плавает в воде. Какую работу A надо совершить, чтобы полностью погрузить льдину в воду?
- **8.13.** Кусок льда массой m=1,9 кг плавает в цилиндрическом сосуде, наполненном жидкостью с плотностью $\rho=0,95$ г/см³.Площадь основания сосуда S=40 см². Найти изменение ΔH уровня жидкости, когда лед растает?
- **8.14.** Деревянный брусок массы M=1,5 кг плавает на поверхности воды. Какой массы m груз можно положить на брусок, чтобы он целиком погрузился в воду, а груз еще был над водой? Плотность дерева $\rho=0,8$ г/см³.
- **8.15.** Полый шар, сделанный из материала с плотностью ρ_1 , плавает на поверхности жидкости, имеющей плотность ρ_2 . Радиус шара R, радиус полости r. Какова должна быть плотность вещества ρ , которым следует заполнить полость шара, чтобы он плавал внутри жидкости?
- **8.16.** Куб, плавающий в ртути, погружен на n=1/4 своего объема. Какая часть объема куба Δ будет погружена в ртуть, если поверх нее налить слой воды, полностью закрывающий куб?
- **8.17.** Вес тела и воде в n=3 раза меньше, чем в воздухе. Какова плотность ρ материала тела? Оценить массу m атмосферы Земли.
 - **8.18.** Оценить массу m атмосферы Земли.
- **8.19.** Два вертикальных сообщающихся цилиндра заполнены водой и закрыты поршнями с массами $m_1=1$ кг и $m_2=2$ кг. В положении равновесия первый поршень расположен выше второго на h=10 см. Когда на первый поршень поместили гирю массой m=2 кг, поршни в положении равновесия оказались на одной высоте. На каком расстоянии H расположатся поршни, если гирю перенести на второй поршень?
- **8.20.** На одной чашке весов находится сосуд с водой, а на другой штатив. На штативе подвешено алюминиевое тело массы m=100 г так, что оно находится над сосудом и при

этом чашки весов уравновешены. Если удлинить нить и опустить тело полностью в воду, то равновесие нарушается. Какой груз M надо положить на чашку весов, чтобы восстановить равновесие?

8.21. В цилиндрический сосуд опустили железную коробочку, плавающую на поверхности. При этом уровень воды в сосуде поднялся на высоту H=2 см. На какую величину h опустится уровень воды, если коробочка утонет? Плотность железа $\rho=7.8$ г/см³, плотность воды $\rho_0=1$ г/см³.

9.ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ

- **9.1** Сколько молекул N содержит-ся в объеме V=1 см³? Какова масса m молекулы воды? Каков приблизительно диаметр d ее молекулы?
- **9.2** Начертить график изотермического, изобарического и изохорического процессов в идеальном газе в переменных p, V; p, T; V, T.

- **9.3** На рис. 9.1 представлен замкнутый цикл. Участок CD соответствует изотерме. Вычертить эту диаграмму в переменных p, T и V, T.
- 9.4 На рис. 9.2 изображены некоторые процессы, происходящие в идеальном газе постоянной массы. Постройте гра-

фики этих процессов в других парах переменных

- **9.5** Каково давление p азота, если средняя квадратичная скорость его молекул v=500 м/с, а его плотность ρ =1,34кг/м³?
- **9.6** В озеро средней глубиной h=10 м и площадью S =10 км бросили кристаллик поваренной соли NaCl массой m = 0,01 г. Сколько ионов N хлора оказалось бы в наперстке воды объемом V = 2 см 3 , зачерпнутом из этого озера, если считать, что соль, растворившись, равномерно распределилась в озере?
- **9.7** В комнате объемом $V=70~{\rm M}^3$ воздух нагрелся с $t_1=10{\rm °C}$ до $t_2=20{\rm °C}$. Найти массу m воздуха, ушедшего из комнаты вследствие повышения температуры, если атмосферное давление в комнате все время равно $p=100~{\rm k}\Pi a$. Молярная масса воздуха $\mu=29~{\rm г/моль}$.
- **9.8** Сколько качаний n должен сделать поршневой насос, чтобы в баллоне объемом V=30 л увеличить давление от атмосферного $p_0=100$ кПа до p=200 кПа? Площадь поршня насоса S=15 см², ход поршня L=30 см. Утечкой газа и нагреванием пренебречь.
- **9.9** Посредине откачанной и запаянной с обоих концов горизонтальной трубки длиной L=1 м находится столбик ртути длиной h=20 см. Если трубку поставить вертикально, столбик ртути сместится на l=10 см. До какого давления p была откачана трубка? Плотность ртути $\rho=13,6$ г/см³.
- **9.10** Два баллона соединены трубкой с краном. В первом находится газ при давлении $p_1=100$ кПа, во втором при $p_2=60$ кПа. Емкость первого баллона V=1 л, второго $V_2=3$ л. Какое давление p установится в баллоне, если открыть кран? Температура постоянная. Объемом трубки можно пренебречь.
- **9.11** Баллон с гелием при давлении $p_1 = 6,5$ МПа и температуре $t_1 = -3$ °С имеет суммарную массу $M_1 = 21$ кг, а при давлении $p_2 = 2$ МПа и той же температуре массу $M_2 = 20$ кг. Какую массу M гелия содержит баллон при давлении p = 15 МПа и температуре t = 27°С?
- **9.12** Найти формулу некоторого соединения углерода с водородом, если известно, что масса m=0,65 г этого вещества в газообразном состоянии создает в объеме V=1 дм 3 при температуре $t=27^{\circ}\mathrm{C}$ давление p=100кПа.

- **9.13** Определить плотность ρ смеси, содержащей $m_1 = 4$ г водорода и $m_2 = 32$ г кислорода при температуре t = 7°C и общем давлении p = 100 кПа.
- **9.14**Сосуд объемом V=20 л содержит смесь водорода и гелия при температуре $t=20^{\circ}$ С и давлении p=2атм. Масса смеси m=5 г. Найти отношение n массы водорода к массе гелия в данной смеси.
- **9.15**В сосуде объемом V=1 дм³ находится m=28 г азота, нагретого до температуры t=1500°C. При этой температуре $\alpha=30\%$ молекул азота диссоциировали на атомы. Определить давление p в сосуде.
- **9.16**Сосуд объемом V=100 л разделен пополам полупроницаемой перегородкой. В одной половине сосуда находится $m_1=2$ г водорода, во второй v=1 моль азота. Определить давления p_1 и p_2 , установившиеся по обе стороны перегородки, если она может пропускать только водород. Температура в обеих частях одинакова (t=127°C) и постоянна.
- **9.17** Внутри закрытого с обоих концов горизонтально расположенного цилиндра имеется поршень, который скользит в цилиндре без трения. С одной стороны поршня находится $m_1 = 3$ г водорода, а с другой $m_2 = 17$ г азота. Какую часть объема занимает водород?
- **9.18**В цилиндре, площадь основания которого равна $S=20~{\rm cm}^2$, находится воздух при температуре $t_I=12^{\circ}{\rm C}$. Атмосферное давление $p_I=101~{\rm k}$ Па. На высоте $H_I=60~{\rm cm}$ от основания цилиндра расположен поршень. На сколько ΔH опустится поршень, если на него поставить гирю массы $m=20~{\rm kr}$, а воздух в цилиндре при этом нагреть до $t_I=27^{\circ}{\rm C}$? Трение поршня о стенки цилиндра и массу самого поршня не учитывать.
- **9.19** В цилиндре, закрытом легко подвижным поршнем массы M и площади S, находится газ. Объем газа равен V. Найти изменение объема газа ΔV , если цилиндр передвигать вертикально с ускорением \vec{a} так, что: а) $a_x > 0$; б) $a_x < 0$. Атмосферное давление равно p_0 , температура газа постоянна. Ось 0x координат направлена вверх.
- **9.20**В цилиндрическом сосуде, расположенном вертикально, находится газ массой M с молярной массой μ . Газ отделен от

атмосферы поршнем, соединенным с дном сосуда растянутой пружиной жесткости k. При температуре T_1 поршень расположен на высоте h от дна сосуда. До какой температуры T_2 надо нагреть газ, чтобы поршень поднялся до высоты H?

10.ВНУТРЕННЯЯ ЭНЕРГИЯ. ТЕПЛОТА. РАБОТА

- **10.1.** Какова внутренняя энергия U гелия, заполняющего аэростат объемом $V = 60 \text{ м}^3$ при давлении $p = 100 \text{ к}\Pi a$?
- **10.2.** Какова внутренняя энергия U одноатомного газа, занимающего при температуре T объем V, если концентрация молекул n?
- **10.3.**В вертикально расположенном цилиндре с площадью основания S=1 дм 2 под поршнем массы m=10 кг находится воздух. При изобарном нагревании воздуха поршень переместился на L=20 см. Какую работу A совершил воздух? Атмосферное давление p=100 кПа.
- 10.4. Свинцовая пуля пробивает деревянную стенку, причем v скорость в момент удара о стенку была v=400 м/с, а в момент вылета $v_1=100$ м/с. Какая часть A пули расплавилась, если на ее нагревание пошло $\eta=60\%$ потерянной механической энергии? Температура пули в момент удара $t_1=50$ °C. Удельная теплоемкость свинца c=126 Дж/кг·К, температура плавления $t_n=327$ °C, удельная теплота плавления $\lambda=26,4$ кДж/кг.
- **10.5.**На сколько градусов ΔT температура воды у основания водопада с высотой H=20 м больше, чем у вершины? Считать, что вся механическая энергия идет на нагревание воды.
- **10.6.**В цилиндре при $t=20^{\circ}$ С находится m=2 кг воздуха под давлением p=98 кПа. Определить работу A воздуха при его изобарном нагревании на $\Delta t=100^{\circ}$ С. Молярная масса воздуха $\mu=0{,}029$ кг/моль.
- **10.7.**В цилиндр заключено m=1,6 кг кислорода при температуре $t_1=17$ °С и давлении p=400 кПа. До какой температуры t_2 нужно изобарно нагреть кислород, чтобы работа по расширению была равна A=40 кДж?
- **10.8.** При нагревании идеальный газ, заполняющий шар с растягивающейся оболочкой, совершает работу A = 75 Дж. На

сколько градусов ΔT при таком нагревании меняется температура газа, если начальный объем шара V = 4 л, начальная температура T = 300 K, атмосферное давление p = 100 кПа? Упругостью оболочки шара пренебречь.

- **10.9.**Некоторое количество газа занимало объем $V_1 = 0.01 \text{ м}^3$ и находилось под давлением $p_1 = 0,1$ МПа при температуре $T_1 = 300$ К. Сначала газ нагревали без изменения объема до температуры $T_2 = 320 \text{ K}$, а затем при постоянном давлении - до температуры $T_3 = 350$ К. Найти работу A, которую совершил газ, переходя из начального состояния в конечное.
- 10.10. Найти теплоемкость системы, состоящей из ограниченного поршнем сосуда с одноатомным газом (параметры газа p_0 , V_0 , T_0). Поршень удерживается пружиной жесткости к. Слева от поршня - вакуум. Теплоемкостями сосуда, поршня и пружины пренебречь. Если газ откачать, поршень будет нахо-

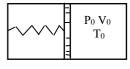


Рис.10.1

диться вплотную к правой стенке цилиндра, а пружина не будет деформирована (рис. 10.1).

- 10.11. В цилиндре под поршнем находится воздух, состояние которого последовательно меняется следующим образом: 1) при постоянном объеме увеличивается давление; 2) при постоянном давлении увеличивается объем; 3) при постоянной температуре увеличивается объем; 4) при постоянном давлении воздух возвращается к исходному состоянию. Начертить диаграмму в переменных p, V и указать, при каких описанных процессах воздух в цилиндре получает теплоту, а при каких отдает.
- **10.12.** Масса *т* идеального газа, находящегося при температуре T, охлаждается при постоянном объеме так, что давление падает в n раз. Затем газ расширяется при постоянном давлении. В конечном состоянии его температура начальной. Определить совершенную газом работу А. Молярная

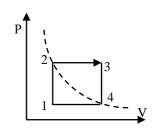
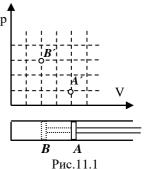


Рис.10.2


масса газа μ .

- **10.13.** С v = 1 моль идеального газа совершают цикл (замкнутый процесс-рис.10.2), состоящий из двух изохор и двух изобар. Температуры в состояниях 1 и 3 равны соответственно T_I и T_3 . Определить работу A, совершаемую газом за цикл, если точки 2 и 4 лежат на одной изотерме.
- **10.14.** В вертикальном цилиндре под поршнем находится кислород массы m=2 кг. Для повышения температуры кислорода на $\Delta t=5^{\circ}\mathrm{C}$ ему было сообщено количество теплоты Q=9160 Дж. Найти удельную теплоемкость кислорода c_p , работу A, совершаемую им при расширении, и увеличение его внутренней энергии ΔU . Молярная масса кислорода $\mu=32$ г/моль.
- **10.15.** Температура газа с массой m и молярной массой μ повышается на величину ΔT один раз при постоянном давлении p, а другой раз при постоянном объеме V. На сколько отличаются друг от друга количества сообщенной газу теплоты Q_p и Q_V и его удельные теплоемкости c_p и c_V в первом и во втором случаях?
- **10.16.** Какое количество теплоты Q требуется для того, чтобы воздух массой m=5 г от температуры $t_1=17$ °C нагреть при постоянном давлении настолько, чтобы его объем V_I увеличился в n=2 раза.
- **10.17.** В герметичном сосуде объемом V = 5,6 дм³ содержится воздух при давлении p = 100 кПа. Какое давление p_1 установится в сосуде, если воздуху сообщить количество тепла Q = 1430 Дж?
- **10.18.** В цилиндре под поршнем находится некоторая масса водорода при температуре $t=130^{\circ}\mathrm{C}$, занимающая при давлении $p_{I}=200\mathrm{k}\Pi$ а объем $V_{I}=8\mathrm{gm^{3}}$. На сколько градусов Δt изменилась температура водорода, если при неизменном давлении объем его уменьшился настолько, что при этом над газом была совершена работа $A=50~\mathrm{Дж}$?
- **10.19.** В цилиндре под поршнем находится v = 0.5 моль воздуха при температуре $T_0 = 300$ К. Во сколько раз n увеличится объем газа при сообщении ему количества теплоты Q=13.2 кДж?

10.20. Теплоизолированный сосуд объемом V = 22,4 дм³ разделен на две равные части тонкой непроницаемой проводящей тепло перегородкой. В первую половину сосуда вводят m_1 =11,2 г азота при температуре $t_1 = 20$ °C, во вторую - $m_2 = 16,8$ г азота при температуре $t_2 = 15$ °C. Какое давление p_1 установится в первой половине сосуда после выравнивания температур?

11.3AKOH СОХРАНЕНИЯ ЭНЕРГИИ В ТЕПЛОВЫХ ПРОЦЕССАХ

- **11.1.** На сколько ΔU изменилась внутренняя энергия одноатомного газа в количестве v=10 моль при его изобарном нагревании на $\Delta T=100$ K? Какую работу A совершил при этом газ и какое количество теплоты Q ему было сообщено?
- **11.2.** Начертить график адиабатного процесса в переменных p, V; V, T; p, T.
- 11.3. Поршень перевели из положения A в положение B (рис.11.1) в первом случае очень медленно, а во втором очень быстро, и выждали достаточное время. В обоих случаях точки A' и B' отражают начальное и конечное состояния. Объяснить происходящие процессы и начертить ход графиков.

- **11.4.** В идеальной тепловой машине за счет каждого килоджоуля энергии, получаемой от нагревателя, совершается работа A=300 Дж. Определить КПД машины η и температуру T_n нагревателя, если температура холодильника $T_x=280$ К.
- **11.5.** Автомобиль массой M=1200 кг на горизонтальном пути развивает скорость v=72 км/ч, расходуя при этом m=80 г бензина на s=1 км пути. Какую скорость v разовьет автомобиль при той же мощности на пути с подъемом

- h=3,5 м на каждые l=100 м пути? КПД двигателя $\eta=28\%$. Теплотворная способность бензина q=45 МДж/кг.
- **11.6.** Реактивный самолет имеет n=4 двигателя, развивающих силу тяги F=20 кН каждый. Сколько керосина израсходуют двигатели во время перелета на расстояние l=5000 км? КПД двигателя $\eta=25\%$.Теплотворная способность керосина q=45 МДж/кг.
- 11.7. Междугородный автобус прошел путь s=80 км за время t=1 ч. Двигатель при этом развил среднюю мощность P=70 кВт при КПД, равном $\eta=25\%$. Сколько литров ΔV дизельного топлива, плотность которого $\rho=800$ кг/м³, сэкономил водитель в рейсе, если норма расхода горючего V=40 л на каждые l=100 км пути? Теплотворная способность топлива q=42 МДж/кг.
- **11.8.** Автомобиль массой m=4,6 т трогается с места на подъеме, равном $\alpha=0,025$, и, двигаясь равноускоренно, за время t=40 с проходит путь s=200 м. Найти расход бензина V (в литрах) на этом участке, если коэффициент сопротивления k=0,02, а КПД двигателя $\eta=20\%$. Плотность бензина $\rho=700$ кг/м³.
- **11.9.** Максимальный КПД некоторой тепловой машины равен $\eta_0 = 0.4$. На сколько $\Delta \eta$ изменится коэффициент, если температура нагревателя увеличится в m = 1,2 раза, а температура холодильника в n = 1,5 раза?
- **11.10.** Во сколько раз n максимально возможный КПД газотурбинного двигателя больше максимально возможного КПД паровой машины, работающей на перегретом паре при температуре $t_1 = 300$ °C, если температура газов в цилиндре двигателя достигает $t_2 = 1000$ °C? Отработанные газы и пар имеют одинаковую температуру $t_3 = 160$ °C.
- **11.11.** Поршень массой M, замыкающий объем V_0 с одноатомным газом при давлении p_0 и температуре T_0 движется со скоростью u. Оценить температуру T и объем V газа при максимальном сжатии. Си-

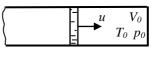


Рис.11.2

стема теплоизолирована, теплоемкостями поршня и сосуда пренебречь (рис. 11.2).

- **11.12.** В каком случае КПД цикла Карно повысится больше: при увеличении температуры нагревателя на ΔT или при уменьшении температуры холодильника на такую же величину?
- **11.13.** Водород совершает цикл Карно. Найти КПД цикла, если при адиабатическом расширении: а) объем газа увеличивается в n=2 раза; б) давление уменьшается в n=2 раза.
- **11.14.** Найти КПД цикла η , состоящего из двух изохор и двух адиабат, если в пределах цикла объем идеального газа изменяется в n=10 раз. Рабочим веществом является азот.
- **11.15.** Найти КПД цикла η , состоящего из двух изобар и двух адиабат, если в пределах цикла давление изменяется в n раз. Рабочим веществом является идеальный газ с показателем адиабаты γ .
- 11.16. Состояние моля идеального газа изменялось вначале по изохоре $1\rightarrow 2$, а затем по изобаре $2\rightarrow 3$ (рис. 11.3). При этом газ совершил работу A. Известно, что температура в конечном состоянии 3 равна температуре в состоянии 1. Определить отношение n давлений в состояниях 1 и 2, если температура в состоянии 2 равна T_2 .

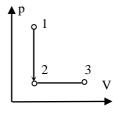


Рис.11.3

11.17. Моль идеального одноатомного газа переводится из начального состояния с температурой $T=300~{\rm K}$ в состояние, в котором его температура увеличилась в три раза, а объем уменьшился в два раза. Найти количество тепла Q, подведен-

ного к газу. Из всех путей перевода газа из начального состояния в конечное реализован тот, где над газом совершается минимальная работа, а

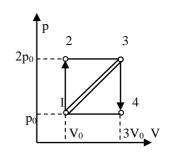


Рис.11.4

давление не уменьшается.

- **11.18.** На рис. 11.4 изображены два замкнутых цикла 1-2-3-1 и 1-3-4-1. Оба цикла проведены с идеальным одноатомным газом. У какого из циклов КПД выше и во сколько раз?
- **11.19.** Для приготовления воды с температурой t = 40°C и объемом V = 200 л смешали холодную воду при $t_I = 10$ °C с горячей при $t_2 = 60$ °C. Какой объем V_I холодной воды был взят?
- **11.20.** Смесь из свинцовых и алюминиевых опилок общей массы m=150 г и температуры $t_0=100$ °C погружена в калориметр с водой, температура которой $t_6=15$ °C, а масса $m_6=230$ г. Теплоемкость калориметра C=42 Дж/К. Найти массу свинца m_c в смеси, если установившаяся температура в калориметре t=20°C.

12. РЕАЛЬНЫЕ ГАЗЫ. НАСЫЩЕННЫЙ ПАР. КОНДЕНСАЦИЯ И ИСПАРЕНИЕ

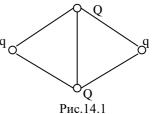
- **12.1.**В сосуд, содержащий $m_0 = 1,5$ кг воды при $t_0 = 15$ °С, впускают $m_n = 200$ г водяного пара при $t_n = 100$ °С. Какая общая температура t установится после конденсации пара? Удельная теплоемкость воды $c_0 = 4,2$ кДж/кг·К, удельная теплота парообразования r = 2,3 МДж/кг.
- **12.2.** В сосуд, содержащий V=2,8 л воды при $t_{e}=20$ °C, бросают кусок стали массой $m_{c}=3$ кг, нагретый до $t_{c}=460$ °C. Вода нагревается до t=60°C, а часть ее обращается в пар. Найти массу воды m_{B} , обратившейся в пар. Удельная теплоемкость стали $c_{c}=0,46$ кДж/кг·К. Теплоемкостью сосуда пренебречь.
- **12.3.** Через воду, имеющую температуру $t_e = 10^{\circ}$ С, пропускают водяной пар при $t_n = 100^{\circ}$ С. Сколько процентов η составит масса воды, образовавшейся из пара, от массы всей воды в сосуде в момент, когда ее температура $t = 50^{\circ}$ С?
- **12.4.** В кастрюлю налили холодной воды (температура $t_B = 10$ °C) и поставили на плиту. Через время $\tau = 10$ мин вода закипела. Через какое время T она полностью испарится?
- **12.5.** Под легким поршнем в цилиндре находится m=1 кг воды при температуре $t_1=0$ °C. В воду опускают кусок желе-

- за массой $m_0=1$ кг, нагретый до температуры $t_2=1100$ °С. На какой высоте h установится поршень? Атмосферное давление $p_0=1$ атм, удельная теплоемкость железа c=0.5 Дж/г·К, площадь поршня S=1000 см². Теплоотдачей и теплоемкостью цилиндра пренебречь.
- **12.6.** В объеме $V_I=20$ л содержатся насыщенные пары воды при температуре $t=100^{\circ}\mathrm{C}$. Какую работу A надо совершить, чтобы изотермическим сжатием уменьшить объем паров до $V_2=10$ л? Объемом воды, образовавшейся при конденсации, пренебречь.
- **12.7.** Найти, какая часть η затраченной на парообразование энергии идет на совершение внешней работы, если принять теплоту парообразования воды при $t=100^{\circ}\mathrm{C}$ равной $q=2,258~\mathrm{MДж/кг}$, а удельный объем пара $V=1,65~\mathrm{m}^3/\mathrm{kr}$.
- **12.8.** В откачанном и герметически закрытом сосуде объемом V=10 дм³ находится открытая колбочка, содержащая m=10 г воды. Сосуд прогревают при температуре t=100°C. Какая масса воды m_B испарится?
- **12.9.** Сосуд объемом V=20 дм³ разделен тонкой подвижной перегородкой на две части. В левую часть помещена вода ($v_B=1$ моль), в правую азот ($v_A=0,5$ моль). Температура поддерживается равной t=100°C. Определить объем V_{II} правой части сосуда.
- **12.10.** Сосуд объемом V=120 дм³ разделен тонкой подвижной перегородкой на две части. В левую часть помещена вода ($v_B=2$ моль), в правую азот ($v_A=1$ моль). Температура поддерживается равной t=100°C. Определить объем V_{II} правой части сосуда.
- **12.11.** В вертикально расположенном цилиндре под поршнем массы M=10 кг находится некоторое количество воздуха, воды и водяного пара при температуре $t=100^{\circ}$ С. В положении равновесия поршень отстоит от дна цилиндра на расстоянии h=20 см. Когда цилиндр расположили горизонтально, поршень занял новое положение равновесия, переместившись на расстояние $\Delta h=3$ см от первоначального положения. Какая масса m воды была на дне сосуда? Площадь поршня S=400 см². Атмосферное давление $p_0=100$ кПа.

- **12.12.** Температура воздуха $t_1 = 20^{\circ}$ С, точка росы $t_2 = 8^{\circ}$ С. Найти абсолютную и относительную влажность воздуха ρ и f, если упругость насыщающих паров при t_1 равна $p_1 = 17,54$ мм рт. ст., а при t_2 $p_2 = 8,05$ мм рт. ст.
- **12.13.** В сосуд объемом V = 10 дм³, наполненный сухим воздухом при давлении $p_0 = 100$ кПа и температуре $t_0 = 0$ °C вводят m = 3 г воды. Сосуд нагревают до температуры t = 100°C. Каково давление p влажного воздуха в сосуде при этой температуре?
- **12.14.** В помещении объемом $V=25~{\rm M}^3$ при температуре $t=20{\rm °C}$ относительная влажность воздуха f=60~%. Определить давление насыщенных паров p при этой температуре, если известно, что полная масса воды, испаренная в помещении, равна $m=250~{\rm r}$. Молярная масса воды $\mu=18~{\rm r/monb}$.
- **12.15.** При понижении температуры воздуха от $t_1 = 25$ °C до $t_2 = 11$ °C из воздуха объемом V = 1 м³ выделилось m = 8,4 г воды. Какова была относительная влажность воздуха f? Давление насыщенных паров $p_1 = 25$ мм рт.ст., $p_2 = 10$ мм рт.ст.
- **12.16.** Относительная влажность воздуха $f_l = 80\%$ при температуре $t_l = 31$ °C. Какова будет относительная влажность f_2 , если этот воздух нагреть при постоянном объеме до $t_2 = 50$ °C? При t_1 давление насыщенных паров воды $p_1 = 31,8$ мм рт.ст., а при $t_2 p_2 = 92,5$ мм рт.ст.
- **12.17.** В помещение нужно подать $V=20000~{\rm M}^3$ воздуха при температуре $t_1=18^{\circ}{\rm C}$ и относительной влажности $f_1=50\%$, забирая его с улицы при $t_2=10^{\circ}{\rm C}$ и относительной влажности $f_2=60\%$. Какую массу m воды нужно дополнительно испарить в подаваемый воздух? Плотности насыщающих водяных паров $\rho_1=15,4~{\rm r/m}^3$ при $t_1=18^{\circ}{\rm C}$ и $\rho_2=9,4~{\rm r/m}^3$ при $t_2=10^{\circ}{\rm C}$.
- **12.18.** Смешали $V_I = 1$ м³ воздуха с относительной влажностью $f_I = 20\%$ и $V_2 = 2$ м³ воздуха с относительной влажностью $f_2 = 30\%$. При этом обе порции были взяты при одинаковых температурах. Смесь занимает объем V = 3 м³. Определить ее относительную влажность f.

13. ЖИДКОСТИ. ПЛАВЛЕНИЕ И КРИСТАЛЛИЗАЦИЯ.СВОЙСТВА ТВЕРДЫХ ТЕЛ

- **13.1.** Какую работу A надо совершить, чтобы надуть мыльный пузырь радиусом r=4 см? Для мыльного раствора коэффициент поверхностного натяжения $\sigma=0.04$ H/м.
- **13.2.** Для определения коэффициента поверхностного натяжения воды была использована пипетка с диаметром выходного отверстия d=2 мм. Масса n=40 капель воды оказалась равной m=1,9 г. Каким получится значение коэффициента поверхностного натяжения воды σ по этим данным?
- **13.3.** В двух капиллярных трубках разного диаметра, опущенных в воду, установилась разность уровней h_1 =2,6 см. При опускании этих же трубок в спирт разность уровней оказалась равной h_2 = 1 см. Зная коэффициент поверхностного натяжения воды σ = 0,073 H/м, найти σ_C для спирта.
- **13.4.** На какую высоту h поднимается вода между двумя параллельными стеклянными пластинками, находящимися на расстоянии l=0,2 мм друг от друга?
- **13.5.** Капля ртути массой m=1 г помещена между двумя горизонтальными параллельными стеклянными пластинками. Какую силу F надо приложить к верхней пластинке, чтобы капля ртути приняла форму диска радиусом r=5 см? Считать, что ртуть совершенно не смачивает стекло. Коэффициент поверхностного натяжения ртути $\sigma=0.51$ H/м.
- **13.6.** Капля воды массой m=0,01 г введена между двумя параллельными стеклянными пластинками, полностью смачиваемыми водой. Найти силу F притяжения между пластинками, если они находятся на расстоянии d=10 мкм друг от друга.
- **13.7.** Оценить, сколько можно унести воды в решете? Размер ячейки $S_I = 1 \times 1 \text{ мм}^2$, площадь решета $S = 0,1 \text{ м}^2$. Решето водой не смачивается.
- **13.8.** Какую энергию нужно затратить, чтобы: а) разбить сферическую каплю ртути радиусом r=3 мм на две одинаковые капли; б) увеличить вдвое объем мыльного пузыря радиусом r=1 см?


- 13.9. Для определения удельной теплоты плавления олова в калориметр, содержащий $m_B = 330$ г воды при $t_B = 7$ °C, влили $m_0 = 350$ г расплавленного олова при температуре затвердевания, после чего в калориметре, теплоемкость которого C = 100 Дж/K, установилась температура t = 32°C. Удельная теплоемкость олова $c_0 = 0.23$ кДж/кг·К. Определить значение удельной теплоты плавления олова λ_0 по данным опыта.
- **13.10.** Смесь, состоящую из $m_1 = 5$ кг льда и $m_2 = 15$ кг воды при общей температуре $t_1 = 0$ °С, нужно нагреть до температуры $\theta = 60$ °С пропусканием водяного пара при $t_2 = 100$ °С. Определить необходимое количество пара m_{II} . Удельная теплота плавления льда $\lambda = 0.33$ МДж/кг. Удельная теплота парообразования воды при 100°С r = 2.3 МДж/кг.
- **13.11.** Пробирка, содержащая M=12 г воды, помещается в охлаждаемую смесь, где вода переохлаждается до t=5°C. Затем пробирка вынимается и встряхивается, причем часть воды замерзает. Сколько воды m должно обратиться в лед, если считать, что между водой и стенками пробирки не происходит теплообмена?
- **13.12.** В колбе находится вода при $t=0^{\circ}$ С. Выкачивая из колбы воздух, заморозили всю воду посредством собственного испарения. Какая часть воды η при этом испарилась, если притока тепла извне не было? Удельная теплота испарения при $t=0^{\circ}$ С r=2.5 МДж/кг, теплота плавления льда $\lambda=0.33$ МДж/кг. Почему с повышением температуры теплота парообразования уменьшается?
- **13.13.** Оценить, какую работу A можно совершить, имея айсберг объемом V=1 км³ В качестве холодильника и океан в качестве нагревателя.
- **13.14.** В достаточно большой откачанный объем, имеющий форму цилиндра, закрытого поршнем, помещена смесь воды со льдом в небольшом количестве. Масса льда m, температура t=0°C, давление насыщенного пара при t=0°C равно p_0 . На какую величину ΔV нужно изменить объем с помощью поршня, чтобы весь лед растаял? Какую при этом нужно совершить работу A? Удельная теплота парообразования q, удельная теплота плавления льда λ .

- **13.15.** Две линейки (одна медная, другая железная) наложены одна на другую так, что совпадают только одним концом. Определить длины l_1 и l_2 линеек при t=0°C, зная, что разность их длин при любой температуре составляет $\Delta l=10$ см. Коэффициент линейного расширения меди $\alpha_I=17\cdot 10^{-6}$ K⁻¹, железа $\alpha_2=12\cdot 10^{-6}$ K⁻¹.
- **13.16.** Толщина биметаллической пластинки, составленной из одинаковых полосок стали и цинка, равна d=0,1 см. Определить радиус кривизны r пластинки при повышении температуры на $\Delta t=11\,^{\circ}$ С. Коэффициент линейного расширения цинка $\alpha_I=25\cdot 10^{-6}~{\rm K}^{-1}$, а стали $\alpha_2=12\cdot 10^{-6}~{\rm K}^{-1}$.
- **13.17.** К проволоке был подвешен груз. Затем проволоку согнули пополам и подвесили тот же груз. Сравнить абсолютное Δl и относительное Δl удлинения проволоки в обоих случаях.
- **13.18.** При океанологических исследованиях для взятия пробы грунта со дна океана на стальном тросе опускают особый прибор. Какова предельная глубина погружения? Массой прибора пренебречь. Предел прочности для стали $\sigma_{\Pi P} = 500$ МПа.
- **13.19.** Бронзовый стержень был охлажден в жидком азоте до температуры $T_I = 72$ К. Охлажденный стержень плотно вставили в прямоугольное отверстие жесткой обоймы, имеющей температуру $T_2 = 293$ К, так что зазор между торцами стержня и соответствующими плоскостями отверстия обоймы можно считать равным нулю. Каким стало давление p стержня па обойму после того, как он нагрелся до температуры $T_2 = 293$ К? Коэффициент линейного расширения бронзы $\alpha_I = 1,75 \cdot 10^{-6}$ К⁻¹, модуль Юнга $E = 1.04 \cdot 10^{11}$ Па.
- **13.20.** Между двумя стенками помещен стержень сечением S, состоящий ил двух частей одинаковой длины I/2, имеющих коэффициенты линейного расширения α_I и α_2 , модули Юнга E_I и E_2 . При температуре T_I торцы стержня лишь касаются стенок. С какой силой стержень будет давить на стенки, если его нагреть до температуры T_2 ? Деформацией стенок пренебречь. На сколько ΔL сместится место стыка частей стержня?

14.ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЗАКОН КУЛОНА

- **14.1.**Найти силу F взаимодействия двух зарядов величиной q=1 Кл каждый, находящихся на расстоянии R=1 км.
- **14.2.** Найти силу F электрического взаимодействия протона и электрона, находящихся на расстоянии R=0,1 нм.
- **14.3.**Во сколько раз сила F электрического отталкивания двух электронов больше силы F_{\varGamma} гравитационного притяжения между ними?
- **14.4.** Два шарика одинаковой массой m=0,1 г каждый имеют одинаковые отрицательные заряды и в состоянии невесомости находятся в равновесии на любом расстоянии друг от друга, заметно превышающем их размеры. Определить число N избыточных электронов на каждом шарике. Каково относительное изменение массы шарика $\Delta m/m$ за счет избытка электронов?
- **14.5.** Какую долю η валентных электронов нужно удалить из медного шарика объемом V=1 см³, чтобы получить на нем заряд q=1 Кл? Молярная масса меди $\mu=64$ г/моль, плотность $\rho=8,9$ г/см³.
- **14.6.** С какой силой F будут взаимодействовать протоны и электроны, содержащиеся в медном шарике объемом $V=1~{\rm cm}^3$, если их разнести на расстояние $R=1~{\rm m}$? Число электронов в атоме меди Z=29.
- **14.7.** Предположим, что электрон в атоме водорода движется вокруг протона по круговой орбите радиусом R=53 пм. С какой скоростью v он движется?
- **14.8.** Заряженные шарики, находящиеся на расстоянии R=2 м друг от друга, отталкиваются с силой F=1 Н. Общий заряд шариков Q=50 мкКл. Чему равны заряды q_1 и q_2 каждого шарика?
- **14.9.** Два одинаковых металлических шарика заряжены так, что заряд одного из них по величине в n=5раз больше заряда другого. Шарики привели в соприкосновение и раздвинули на прежнее расстояние. Во сколько раз изменилась сила их электрического взаимодействия?

- **14.10.** Два точечных заряда $(q \ u \ 4q)$ находятся на расстоянии R друг от друга. Какой заряд Q и на каком расстоянии x от первого заряда нужно поместить, чтобы вся система находилась в равновесии? Будет ли положение равновесия устойчивым?
- **14.11.** Два одинаковых небольших шарика массой m = 0,1 г подвешены в одной точке на одинаковых нитях длиной l = 25 см. Шарики зарядили одинаковыми зарядами Q, после чего они разошлись на расстояние x = 5 см. От

шлись на расстояние x = 5 см. Определить величину заряда Q.

- **14.12.** Четыре точечных заряда одного знака связаны нитями одинаковой длины l, как показано на рис. 14.1. Определить силу T натяжения нити, связывающей заряды Q
- **14.13.** Заряды (+Q, -Q и +q) расположены в вершинах правильного треугольника со стороной a=1 см. Определить силу F, действующую на заряд +q. Величины зарядов: Q = 2мкКл, q = 1 мкКл.
- **14.14.** Три одинаковых одноименных заряда q расположены в вершинах правильного треугольника. Какой заряд Q нужно поместить в центре этого треугольника, чтобы система находилась в равновесии?
- **14.15.** Четыре одинаковых точечных заряда Q размещены в углах квадрата. Какой заряд q следует расположить в центре квадрата, чтобы вся система находилась в равновесии? Будет ли это равновесие устойчивым?
- **14.16.** Три точечных заряда $q_1 = 0.9$ мкКл, $q_2 = 0.5$ мкКл и $q_3 = 0.3$ мкКл расположены вдоль одной прямой и связаны двумя нитями, каждая длиной l = 0.1 м. Найти натяжение нитей T_{12} и T_{23} . Заряд q_2 находится посередине.
- **14.17.** Два заряженных шарика соединены нитью длиной l=10 см. Отношение масс шариков $m_1/m_2=2$, заряды одинаковы по величине q=0,1 мкКл, но противоположны по знаку. Какую внешнюю силу F надо приложить к шарику массой m_1 ,

чтобы в процессе движения нить была натянута? Силу тяжести не учитывать.

14.18. Три одинаковых шарика массой m = 10 г каждый соединены нитями одинаковой длины $l=10~{\rm cm}$. Два шарика имеют заряд q = 0.1 мкКл, третий шарик - отрицательный заряд (-q). К шарику приложили этому направленную перпендикулярно нити, соединяющей положительные заряды, под действием которой вся система (рис. 14.2) движется с ускорением. При этом натяжения всех нитей одинаковы.

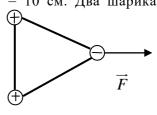


Рис.14.2

Найти величину ускорения а. Силу тяжести не учитывать.

14.19. Внутри гладкой сферы находится маленький заряженный шарик. Какой величины Q заряд нужно поместить в нижней точке сферы, для того чтобы шарик удерживался в ее верхней точке? Диаметр сферы d = 50 см, заряд шарика q = 1 мкКл, его масса m = 10 г. Указание: использовать условие устойчивости равновесия.

15.НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

- 15.1. Начертить примерную картину силовых линий электрического поля, созданного двумя точечными зарядами: a) +q, +2q; 6)+q, -2q.
- **15.2.** Расстояние между точечными зарядами q и nq (n=9)равно l = 8 см. На каком расстоянии x от первого заряда находится точка, в которой напряженность поля равна нулю?
- 15.3.В основании равностороннего треугольника со стороной a = 10см находятся заряды по +q каждый, а в вершине заряд (-q). Величина заряда q=1 нКл. Найти напряженность Eэлектрического поля в центре треугольника.
- **15.4.** Тонкое кольцо радиуса R равномерно заряжено зарядом q. Найти напряженность E поля на оси кольца на расстоянии x от его центра. Рассмотреть предельный случай для x>>R.
- **15.5.** Расстояние между зарядами q = 6.4 мкКл и (-q) равно l = 12 см. Найти напряженность E поля в точке, удаленной от каждого из зарядов на x = 8 см.

- **15.6.**В направленном вертикально однородном электрическом поле находится пылинка массы m=1 нг с зарядом $q=3,2\cdot 10^{-17}$ Кл. Какова напряженность E поля, если пылинка находится в равновесии?
- **15.7.**Точечный заряд q=27 нКл находится в однородном электрическом поле с напряженностью $E_0=40$ кВ/м. Найти напряженность E результирующего поля на расстоянии L=9 см от заряда в точках, лежащих: а) на силовой линии однородного поля, проходящей через заряд; б) на прямой, проходящей через заряд и перпендикулярной силовым линиям.
- **15.8.**Положительно заряженный шарик массы m=18 г находится во взвешенном состоянии в жидком диэлектрике, плотность которого $\rho_1=0.9$ г/см³. В диэлектрике создано электрическое поле напряженностью E=45 кВ/м, направленное вертикально вверх. Найти заряд Q шарика. Плотность материала шарика $\rho_2=1.8$ г/см³.
- **15.9.** Две заряженных материальных точки с зарядами q=-10 нКл и Q=20 нКл и массами m=1 г и M=2 г соответственно движутся прямолинейно в однородном электрическом поле напряженностью E=1 кВ/м так, что расстояние между ними не меняется. Определить это расстояние L между зарядами
- **15.10.** Тонкий стержень согнут в виде окружности радиуса $R=0,5\,$ м так, что между его концами остался воздушный промежуток $d=0,02\,$ м. По стержню равномерно распределен заряд $Q=0,33\,$ нКл. Определить напряженность поля E в центре окружности.
- **15.11.** Конический маятник состоит из легкой непроводящей нити длиной L=1 м, на конце которой находится шарик массы m=10 г с зарядом q=20 мкКл. На маятник наложено однородное электрическое поле с напряженностью E=1 кВ/м, направленное вертикально. Определить угловую скорость ω движения шарика, если угол, образуемый нитью с ее равновесным положением, равен $\alpha=60^\circ$.
- **15.12.** Сфера радиуса R равномерно заряжена с поверхностной плотностью σ . Найти напряженность E поля как

функцию расстояния r до центра сферы и построить график E(r). Выразить E(r) через полный заряд Q.

- **15.13.** Шар радиуса R равномерно заряжен с объемной плотностью заряда ρ . Найти напряженность E поля как функцию расстояния r до центра шара и построить график E(r). Выразить E(r) через полный заряд Q шара.
- **15.14.** Длинная тонкая цилиндрическая оболочка радиуса R равномерно заряжена с поверхностной плотностью σ . Найти напряженность поля E как функцию расстояния до оси оболочки r и построить график E(r).
- **15.15.** Бесконечный цилиндр радиуса R равномерно заряжен по всему объему с объемной плотностью заряда ρ . Найти напряженность поля E как функцию расстояния r до оси цилиндра и построить график E(r).
- **15.16.** Бесконечная пластина толщины h равномерно заряжена по объему с объемной плотностью заряда ρ . Найти напряженность поля E внутри и вне ее как функцию расстояния x до середины пластины и построить график E(x).
- **15.17.** В равномерно заряженной бесконечной пластине вырезана сферическая полость, как показано на рис. 15.1. Толщина пластины h.

Чему равна напряженность E поля в точках A и B?

15.18. В равномерно заряженном с объемной плотностью ρ шаре вырезали сферическую полость радиуса r, центр

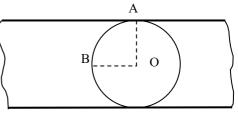
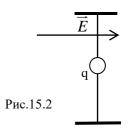



Рис.15.1

которой находится на расстоянии a от центра шара. Найти напряженность E электрического поля внутри полости вдоль прямой, соединяющей центр полости и центр шара. Радиус шара R.

15.19.В однородном горизонтальном электрическом поле напряженности E=100 В/м на двух легких вертикальных нитях удерживается заряженный шарик массой m=0,1 г и

зарядом q=10 мкКл (рис. 15.2). Нижнюю нить пережигают. Определить максимальный угол β , на который отклонится шарик сразу же после пережигания нити, и угол α , образуемый верхней нитью с вертикалью после того, как шарик остановится.

16.ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ.

- **16.1.** Два заряда величиной q = 1 мкКл каждый находятся на расстоянии $r_1 = 50$ см друг от друга. Какую работу A надо совершить, чтобы сблизить их до расстояния $r_2 = 5$ см?
- **16.2.** Два точечных заряда одного знака $q_1 = 20$ нКл и $q_2 = 5$ нКл находятся на расстоянии r = 0.5 см друг от друга. Какую работу A совершат электрические силы при увеличении расстояния между зарядами в n = 5 раз?
- **16.3.** Заряды +q, -2q, +3q расположены в вершинах правильного треугольника со стороной a. Какова потенциальная энергия Π этой системы?
- **16.4.** Три одинаковых по величине и знаку заряда q=1 мкКл расположены в вершинах правильного треугольника со стороной a=1 см. Какую работу A нужно совершить, чтобы расположить эти заряды вдоль одной линии на расстоянии a между соседними зарядами?
- **16.5.** Расстояние между зарядами $q_1 = 10$ нКл и $q_2 = 1$ нКл равно l = 1,1 м. Найти напряженность поля E в точке на прямой, соединяющей заряды, в которой потенциал равен нулю.
- **16.6.** Неподвижный точечный заряд Q = 40 мкКл создает в некоторой точке A электрическое поле напряженностью $E_A = 400$ В/м, а в точке B напряженностью $E_B = 144$ В/м. Определить работу A, необходимую для перемещения заряда q = 1 мкКл из точки A в точку B.
- **16.7.** Два точечных заряда, одинаковых по величине, но разных по знаку, находятся на расстоянии b=30 см друг от друга. В точках, находящихся на таком же расстоянии от

- обоих зарядов, напряженность электрического поля $E=100~{\rm B/m}$. Определить потенциал поля φ в точке, расположенной на прямой между зарядами на расстоянии b/3 от положительного заряда.
- **16.8.** Построить графики изменения напряженности и потенциала поля вдоль линии, проходящей через два точечных заряда, находящихся на расстоянии 2d друг от друга. Величины зарядов равны: а) +q и -q; б) +q и +q.
- **16.9.** Тонкое кольцо радиуса R имеет заряд q. Найти потенциал φ поля кольца на его оси.
- **16.10.** Два параллельных тонких кольца каждое радиуса R=40 см имеют общую ось. Расстояние между их центрами d=30 см. Найти работу A, совершаемую электрическими силами при перемещении заряда Q=1 мкКл из центра первого кольца в центр второго, если по первому кольцу равномерно распределен заряд $q_1=2$ мкКл, по второму заряд $q_2=3$ мкКл.
- **16.11.** Внутри полой тонкой проводящей сферы радиуса R=20 см находится другая сфера радиуса r=10 см с общим центром. Большой сфере сообщается заряд Q=50 нКл, малой заряд q=30 нКл. Определить потенциалы сфер.
- **16.12.** Три концентрические сферы радиусов R, 2R и 3R имеют заряды +q, +2q, -3q. Определить потенциал каждой сферы.
- **16.13.** На расстоянии a=16 см от центра равномерно заряженной сферы радиуса R=11 мм напряженность электрического поля E=77 В/м. Определить потенциал φ сферы и поверхностную плотность заряда σ на сфере.
- **16.14.** Две концентрические сферы радиусов R и 2R заряжены равномерно по поверхности зарядами $q_1=0,1$ мкКл и $q_2=0,2$ мкКл. На равном расстоянии от каждой из сфер потенциал $\varphi=3$ кВ. Найти R.
- **16.15.** Две большие тонкие параллельные пластины равномерно заряжены с поверхностной плотностью σ и -3 σ . Расстояние между пластинами d. Определить напряженность поля E_1 между пластинами и E_2 вне пластин. Определить разность потенциалов φ_1 φ_2 между пластинами. Построить гра-

фик изменения напряженности и потенциала электрического поля вдоль линии, перпендикулярной пластине.

- **16.16.** Точечный заряд q=-25 нКл переместили в направлении силовой линии на расстояние L=2 см в однородном электрическом поле с напряженностью E=1 кВ/м. Найти работу поля A, изменение потенциальной энергии ΔW заряда в поле и разность потенциалов $\Delta \varphi$ между конечной и начальной точками.
- **16.17.** Электрон движется по направлению силовых линий однородного электрического поля, напряженность которого E=120 В/м. Какое расстояние x пролетит он до полной остановки, если начальная скорость электрона $v=10^6$ м/с? Сколько времени t_x электрон будет двигаться до полной остановки?
- **16.18.** Электрон вылетает из точки поля, потенциал которой $\varphi_0 = 600$ В, со скоростью $v = 1,2\cdot 10^7$ м/с в направлении силовых линий. Определить потенциал φ точки, в которой скорость электрона станет равной нулю.
- **16.19.** Потенциал шара, заряженного равномерно по поверхности, равен $\varphi = 300$ В. Какой минимальной скоростью v должен обладать электрон, чтобы улететь с поверхности шара на большое расстояние? Заряд электрона -e ($e = 1,6\cdot10^{-19}$ Кл), масса $m = 0,9\cdot10^{-30}$ кг.
- **16.20.** Найти минимальную кинетическую энергию K_0 (в эВ) альфа-частицы, способной издалека сблизиться с первоначально покоившимся ядром азота до расстояния $r_{\text{мин}} = 5$ пм. Относительные массы атомов гелия $A_{\text{He}} = 4$, азота $A_{\text{N}} = 14$.
- **16.21.**В однородном электрическом поле напряженностью $E=10~\mathrm{kB/m}$, направление линий напряженности которого совпадает с направлением силы тяжести, на нити длиной $L=0.5~\mathrm{m}$ по горизонтальной окружности движется шарик массой $m=10~\mathrm{r}$, имеющий положительный заряд $q=5~\mathrm{mkKn}$. Определить минимальную работу A, которую нужно совершить для разгона шарика из состояния покоя до угловой скорости $\omega=10~\mathrm{pag/c}$.
- 16.22. Два небольших одинаково заряженных тела удерживаются на изолирующей горизонтальной гладкой поверхности

на расстоянии r = 10 см друг от друга. Сначала отпускают одно из них, а затем, когда расстояние между телами увеличится в n=3 раза, и другое. Определить скорости тел, когда они разлетятся на большое расстояние. Заряд каждого тела q=1 мкКл, масса m=1 г.

16.23.По наклонной плоскости с углом наклона к горизонту $\alpha = 30^{\circ}$ с высоты h = 0.5 м соскальзывает без трения небольшое тело массы m = 10 г, имеющее заряд (-q). Положительный точечный заряд а помещен в вершине отомкап (рис. 16.1). угла Определить скорость тела vв момент перехода на гори-

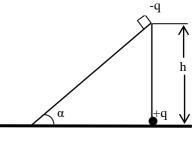


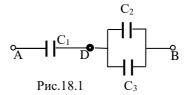
Рис 16.1

зонтальную плоскость. Заряд q = 2 мкКл.

17. ПРОВОДНИКИ И ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

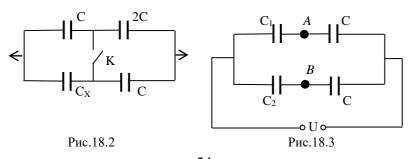
- **17.1.** Металлический заряженный шар радиуса R_1 , помещен в центре проводящей сферической оболочки, внутренний и внешний радиусы которой соответственно равны R_2 и R_3 . Заряд шара О, оболочка не заряжена. Получить выражения для зависимости напряженности поля E и потенциала φ от расстояния r до центра шара и построить графики E(r) и $\varphi(r)$.
- 17.2. Две одинаковые металлические пластины небольшой толщины сблизили на расстояние, значительно меньшее их линейных размеров, расположив их параллельно друг другу. Одной из пластин сообщили заряд q, другой - заряд 3q. Определить заряды на четырех поверхностях пластин, считая распределение его по поверхности равномерным. Нарисовать картину силовых линий.
- 17.3. Электрическое поле создано точечным q = 20 мкКл, который находится вблизи большой заземленной металлической пластины на расстоянии a = 1 м от нее. Нари-

- совать картину силовых линий электрического поля. Определить силу притяжения F заряда к пластине и напряженность поля E в точке, находящейся на расстоянии a/2 от заряда и от пластины.
- **17.4.** На высоте h над проводящей плоской поверхностью расположены два заряженных шарика, соединенные легким изолирующим стержнем длиной l. Заряды на шариках одинаковы по величине q и противоположны по знаку. Найти силу, с которой проводящая плоскость действует на систему зарядов.
- **17.5.** Металлический шар радиусом $R_1 = 50$ см, заряженный до потенциала $\varphi = 10$ В, окружают тонкой сферической проводящей оболочкой радиуса $R_2 = 75$ см. Определить потенциал шара φ_1 после того, как он будет на короткое время соединен проводником с оболочкой.
- **17.6.** Металлический шар радиуса r = 50 см, заряженный до потенциала $\varphi = 10$ В, окружают концентрической сферической проводящей тонкой оболочкой радиуса R = 75 см. Чему будет равен потенциал шара φ_1 , если заземлить оболочку?
- **17.7.** На расстоянии r=1,5 м от центра изолированного незаряженного металлического шара снаружи находится точечный заряд q=1 мкКл. Определить потенциал шара φ .
- **17.8.** Проводящие сферы радиусов $R_1 = 15$ мм и $R_2 = 45$ мм, находящиеся достаточно далеко друг от друга, заряжены до потенциалов $\varphi_1 = 90$ В и $\varphi_2 = 20$ В соответственно. Каким станет потенциал φ сфер, если их соединить тонкой проволочкой? Какой заряд q и в каком направлении протечет по проволоке?
- **17.9.** Если зарядить два удаленных металлических шара, а затем сблизить их до расстояния l=1,6 м между их центрами, то потенциал одного из них возрастает на $\Delta \varphi_1 = 2,4$ В, а другого уменьшается на $\Delta \varphi_2 = 4,1$ В. Определить величину зарядов q_1 и q_2 на шарах, учитывая, что их радиусы гораздо меньше l.
- **17.10.** N одинаковых капелек ртути заряжены до одинакового потенциала $\varphi_0 = 15$ В. Каков будет потенциал φ большой капли, получившейся в результате слияния этих капелек? Вычислить для N = 27.


- **17.11.** Металлический шар заряжают при помощи пластинки, которую после каждого соприкосновения с шаром снова заряжают от источника до заряда Q=5 мкКл. Определить максимальный заряд шара $q_{\rm макс}$, если его заряд после первого соприкосновения равен q=3 мкКл.
- **17.12.** Два небольших проводящих заряженных шара радиуса R=5 мм каждый расположены на расстоянии r=5 см друг от друга. Шары поочередно на некоторое время заземляют. Определить потенциал φ_I шара, который был заземлен первым, если первоначально каждый шар имел заряд q=10 нКл.
- **17.13.** Два небольших проводящих заряженных шара радиуса R=5 мм каждый расположены на расстоянии r=5 см друг от друга. Шары поочередно на короткое время заземляют. Определить заряд q_2 , оставшийся на шаре, который был заземлен вторым, если первоначально каждый шар имел потенциал $\varphi=10~\mathrm{B}$.
- **17.14.** Пластина из диэлектрика (диэлектрическая проницаемость $\varepsilon = 5$) помещена во внешнее однородное поле напряженности $E_0 = 1$ кВ/м перпендикулярно силовым линиям. Определить поверхностную плотность связанных зарядов σ' на поверхностях пластины.
- **17.15.** Между двумя тонкими металлическими пластинами, расположенными на расстоянии l друг от друга и заряженными с поверхностной плотностью $+\sigma$ и $-\sigma$, помещают металлическую пластину толщиной d_0 и диэлектрические пластины толщиной d_1 и d_2 ($l=d_0+d_1+d_2$). Диэлектрические проницаемости пластин $\varepsilon_2 > \varepsilon_1$. Построить график зависимости проекции напряженности поля E_x на ось θx , перпендикулярную пластинам, и потенциала φ от координаты x.
- **17.16.** Заряженный металлический шар окружен плотно прилегающей сферической диэлектрической оболочкой с диэлектрической проницаемостью $\varepsilon=5$. Заряд шара q=1 мкКл. Определить величину связанного заряда q' на внешней поверхности оболочки.
- **17.17.** Металлический заряженный шар радиуса R_1 помещен в центре диэлектрической сферической оболочки, внутренний и внешний радиусы которой соответственно R_2 и R_3 , а диэлектрическая проницаемость ε . Заряд шара Q, оболочка не заря-

жена. Получить выражения для зависимости напряженности поля E и потенциала φ от расстояния r до центра шара и построить графики E(r) и $\varphi(r)$.

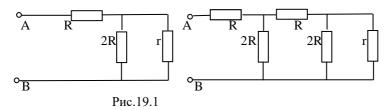
- **17.18.** Найти силу T натяжения нити, соединяющей одинаковые маленькие шарики, которые имеют одинаковые заряды Q=5 мкКл. Шарики плавают внутри жидкости, нить вертикальна. Расстояние между шариками l=20 см. Диэлектрическая проницаемость жидкости $\varepsilon=4$.
- **17.19.** Два одинаковых заряженных шарика, подвешенных на нитях одинаковой длины в одной точке, опускаются в жидкость. Какова должна быть плотность ρ материала шариков, чтобы угол расхождения не изменился? Диэлектрическая проницаемость жидкости $\varepsilon = 3$, плотность ее $\rho_{\rm ж} = 0.8~{\rm \Gamma/cm^3}$.
- **17.20.**В закрепленной металлической сфере радиуса R проделано очень маленькое отверстие. Заряд сферы равен Q. Частица с зарядом q и массой m летит по прямой, соединяющей центры сферы и отверстия, имея вдали от сферы скорость v_0 . Какой будет скорость v частицы в центре сферы.
- **17.21.** Две металлические пластины расположены параллельно друг другу на расстоянии d=0.5 см. Между пластинами находится диэлектрик с проницаемостью $\varepsilon=6$. На одной пластине заряд $q_1=1$ нКл, на другой заряд $q_2=2$ нКл. Площадь пластин S=100 см². Определить разность потенциалов между пластинами.


18.КОНДЕНСАТОРЫ

- **18.1.** Плоский воздушный конденсатор с квадратными пластинами размером a=26 см и с расстоянием между ними $d_I=0.5$ мм заряжен до разности потенциалов $U_I=10$ В и отклю-
- чен от источника. Какова будет разность потенциалов U_2 , если пластины раздвинуть до расстояния $d_2 = 5$ мм?
- **18.2.** Разность потенциалов между точками A и B равна U=100 В (рис. 18.1). Емкости

- конденсаторов $C_1=2$ мк Φ , $C_2=3$ мк Φ , $C_3=5$ мк Φ . Определить заряды $q_1,\ q_2,\ q_3$ на конденсаторах и разность потенциалов между точками A и D.
- **18.3.** Два последовательно соединенных конденсатора емкостью $C_I = 2$ мкФ и $C_2 = 4$ мкФ присоединены к источнику постоянного напряжения U = 120 В. Определить напряжения U_I и U_2 на каждом конденсаторе.
- **18.4.** Конденсатор емкостью $C_I = 4$ мкФ, заряженный до напряжения $U_I = 80$ В, соединяют с обкладками конденсатора емкостью $C_2 = 60$ мкФ, заряженного до напряжения $U_2 = 16$ В, причем соединяются обкладки, имеющие одинаковые по знаку заряды. Определить напряжение U на конденсаторах после соединения.
- **18.5.** Какой емкости C_1 конденсатор надо подключить последовательно к другому конденсатору емкостью $C_2 = 800$ пФ, чтобы емкость батареи была C = 160 пФ?
- **18.6.** Конденсатор неизвестной емкости C_I заряжен до напряжения $U_I = 80$ В и соединен с обкладками конденсатора емкостью $C_2 = 60$ мкФ, заряженного до напряжения $U_2 = 16$ В. Напряжение на батарее конденсаторов после соединения U = 20 В, причем конденсаторы соединены обкладками с зарядами разного знака. Определить C_I .
- **18.7.** В плоский воздушный конденсатор с расстоянием между обкладками d=1 см вводят параллельно обкладкам металлическую пластину толщиной l=0,3 см. Как изменится емкость конденсатора? Пластина имеет одинаковую форму и размеры с обкладками.
- **18.8.** В плоский воздушный конденсатор с расстоянием между обкладками d=2 см вводят параллельно его обкладкам диэлектрическую пластину толщиной l=1 см и диэлектрической проницаемостью $\varepsilon=5$. Как изменится емкость конденсатора? Форма и размеры пластины одинаковы с обкладками.
- **18.9.** Пространство между обкладками плоского конденсатора сплошь заполнено диэлектриком, состоящим из двух половинок равных размеров, но с разными диэлектрическими проницаемостями $\varepsilon_1 = 5$ и $\varepsilon_2 = 10$. Граница раздела между диэлектриками перпендикулярна обкладкам. Найти емкость C такого конденса-

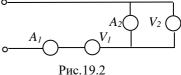
- тора. Площадь каждой из обкладок конденсатора $S=100~{\rm cm^2},$ расстояние между пластинами $d=1,5~{\rm cm}.$
- **18.10.** Пространство между обкладками плоского конденсатора сплошь заполнено двумя слоями диэлектриков толщиной $d_1=1$ см и $d_2=0,5$ см, параллельными обкладкам. Диэлектрические проницаемости диэлектриков $\varepsilon_1=5$ и $\varepsilon_2=10$, площадь пластин S=100 см². Найти емкость C конденсатора.
- **18.11.** К воздушному конденсатору, заряженному до напряжения $U_0 = 210$ В, подсоединили такой же незаряженный конденсатор, но с диэлектриком из стекла. Какова диэлектрическая проницаемость стекла ε , если напряжение на зажимах батареи конденсаторов оказалось равным U = 30 В?
- **18.12.** Плоский воздушный конденсатор находится во внешнем однородном электрическом поле напряженностью E=1 кВ/м, перпендикулярном пластинам. Площадь каждой пластины S=100 см². Какой заряд Q окажется на каждой из пластин, если конденсатор замкнуть проводником накоротко?
- **18.13.** В пространство между обкладками незаряженного плоского конденсатора вносят металлическую пластину, имеющую заряд Q=5 нКл, так что между пластиной и обкладками конденсатора остаются зазоры $l_1=1$ см и $l_2=0,3$ см. Площади пластины и обкладок конденсатора одинаковы и равны S=150 см². Определить разность потенциалов U между обкладками конденсатора.
- **18.14.** В схеме, изображенной на рис. 18.2, емкость батареи конденсаторов не изменяется при замыкании ключа K. Определить емкость конденсатора C_x . Емкость C = 3 мк Φ .
 - 18.15. Найти модуль разности потенциалов (рис. 18.3) между


- точками A и $B \mid \varphi_A \varphi_B \mid$. Емкости $C_1 = 1$ мк Φ , $C_2 = 2$ мк Φ , C = 3мк Φ . Напряжение источника U = 100 В.
- **18.16.** С какой силой F притягиваются друг к другу пластины заряженного плоского конденсатора, емкость которого равна C=2 пФ и разность потенциалов U=300 В? Расстояние между пластинами d=2 мм.
- **18.17.** Заряженный плоский конденсатор обладает энергией W=5 мДж. Пространство между его обкладками заполнено диэлектрической пластиной с проницаемостью $\varepsilon=9$. Найти работу A, которую нужно совершить для удаления пластины из конденсатора. Конденсатор изолирован.
- **18.18.** Определить изменение энергии электрического поля ΔW при соединении конденсаторов $C_1=2$ мкФ и $C_2=0.5$ мкФ, заряженных до напряжений $U_1=100$ В и $U_2=50$ В соответственно и соединенных одноименно заряженными обкладками.
- **18.19.** Плоская металлическая пластина толщиной d=2 мм и площадью $S=200~{\rm cm}^2$ находится в однородном электрическом поле напряженностью $E=4~{\rm kB/m}$ перпендикулярно его силовым линиям. Поле выключается. Определить изменение ΔW внутренней энергии пластины.
- **18.20.** Две одинаковые ртутные капли радиуса R=50 мкм, заряженные до потенциалов $\varphi_1=-\varphi_2=0,15$ кВ на достаточно большом удалении друг от друга, притягиваясь, сливаются в одну каплю. Найти повышение температуры ΔT образовавшейся капли, вызванное компенсацией электрических зарядов капель при слиянии. Плотность ртути $\rho=13,6$ г/см³, удельная теплоемкость c=0,12 кДж/(кг·К).

19.ПОСТОЯННЫЙ ТОК

- **19.1.** Конденсатор емкостью C=100 мкФ заряжается до напряжения U=500 В за время $\tau=0.5$ с. Каково среднее значение < I > силы зарядного тока?
- **19.2.** По проводу идет ток силой I=10 А. Найти массу m электронов, проходящих через поперечное сечение провода за время t=1 ч.

- **19.3.** Определить плотность тока j, текущего по мотку медной проволоки длиной l=10 м, на который подано напряжение U=17 мВ. Удельное сопротивление меди $\rho=17$ НОм·м.
- **19.4.** Плоский конденсатор с пластинами квадратной формы со стороной a=21 см и расстоянием между пластинами d=2 мм присоединен к источнику напряжения U=750 В. В пространство между пластинами с постоянной скоростью v=8 см/с вдвигают стеклянную пластинку толщиной d=2 мм. Какой ток I пойдет при этом по цепи? Диэлектрическая проницаемость стекла $\varepsilon=7$.
- **19.5.** Какова напряженность E электрического поля и алюминиевом проводе сечением S=1,4 мм² при силе тока I=1 А? Удельное сопротивление алюминия $\rho=2,8\cdot 10^{-8}$ Ом·м.
- **19.6.** Определить сопротивление R мотка стальной проволоки диаметром d=1 мм и массой m=300 г. Удельное сопротивление стали $\rho=1,5\cdot 10^{-7}$ Ом·м, плотность стали $D=7,8\cdot 10^3$ кг/м³.
- **19.7.** Определить силу тока I, создаваемого электроном, движущимся по круговой орбите радиуса $r=0.5\cdot 10^{-10}$ м в атоме водорода.
- 19.8. Нихромовая спираль нагревательного элемента должна иметь сопротивление R=30 Ом при температуре накала t=900°С. Какой длины l надо взять проволоку для изготовления спирали, если площадь поперечного сечения проволоки S=0.30 мм²? Удельное сопротивление нихрома $\rho=1.1$ мкОм·м, температурный коэффициент сопротивления $\alpha=0.4\cdot10^{-3}$ К $^{-1}$.
- **19.9.** Угольный стержень соединен последовательно с железным такой же толщины. При каком соотношении их длин сопротивление данной комбинации не зависит от температуры? Температурные коэффициенты сопротивления угля и железа $\alpha_I = -0.8 \cdot 10^{-3} \, \mathrm{K}^{-1}$, $\alpha_2 = 6 \cdot 10^{-3} \, \mathrm{K}^{-1}$, удельные сопротивления $\rho_I = 4 \cdot 10^{-5} \, \mathrm{Om} \cdot \mathrm{M}$, $\rho_2 = 1.1 \cdot 10^{-6} \, \mathrm{Om} \cdot \mathrm{M}$ соответственно.
- **19.10.** К сети напряжением U = 120 В присоединяют два резистора. При их последовательном соединении сила тока $I_1 = 3$ А, а при параллельном сила суммарного тока $I_2 = 16$ А. Чему равны сопротивления этих резисторов R_1 и R_2 ?


19.11. Две электрические цепи состоят из резисторов с известными сопротивлениями R и 2R и неизвестным сопротив-

лением r (рис. 19.1). При каком r сопротивления обеих цепей, измеренные между точками A и B, окажутся одинаковыми?

19.12. В схему (рис. 19.2) включены два амперметра и два одинаковых вольтметра. Схема подключена к источнику. По-казания амперметров $I_1 = 1\,$ A, $I_2\,$ о

 $V_1 = 0.9$ А, показания первого вольтметра $U_1 = 10$ В. Найти показания второго вольтметра U_2 .

19.13. Если к амперметру, рас-

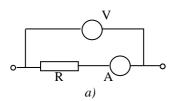
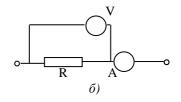
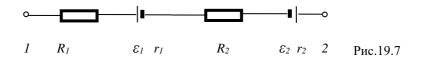



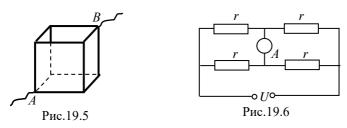
Рис.19.3

считанному на максимальную силу тока I= 2 A, присоединить шунт сопротивлением r=1 Ом, то цена деления шкалы амперметра возрастает в n = 10 раз. Определить, какое добавочное сопротивление R необходимо присоединить к амперметру без шунта, чтобы его можно было использовать как вольтметр, измеряющий напряжение до U = 220 B.


19.14.Сопротивление R некоторого резистора измеряют с помощью амперметра и вольтметра по двум схемам(рис.19.3). Показания приборов в случае а) $I_I = 1.9$ A,

 $U_2 = 190 \text{ B}$; в случае б) $I_2 = 2 \text{ A}$, $U_2 = 170 \text{ B}$. В обоих случаях на схему подается одинаковое напряжение. Найти R.

19.15. Присоединение к вольтметру некоторого добавочного сопротивления увеличивает предел измерения в n=5раз. Другое добавочное сопротивление увеличивает предел в m=2 раза. Во сколько раз увеличится предел, если эти сопротивления соединить параллельно между собой и подключить последовательно к вольтметру?


- **19.16.** Найти сопротивление R разветвленной цепи, показанной на рис. 19.4, если каждый из резисторов, составляющих цепь, имеет сопротивление r.
- **19.17.** Определить электрическое сопротивление R проволочного каркаса в виде квадрата, середины противоположных сторон которого соединены между собой и в центре спаяны. Каркас включен в цепь диагональными вершинами. Сопротивление стороны квадрата r.
- **19.18.** Определить сопротивление проволочной сетки в виде правильного шестиугольника с тремя большими диагоналями, спаянными в центре, и включенной в цепь точками на концах одной диагонали. Сопротивление стороны шестиугольника *r*.
- **19.19.** Определить сопротивление проволочного куба между точками A и B (рис. 19.5). Сопротивление каждого ребра равно r.

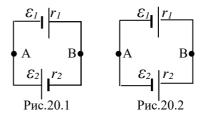
- **19.20.** Какой ток I будет идти через амперметр (схема на рис. 19.6)? Напряжение на зажимах U. Внутреннее сопротивление амперметра пренебрежимо мало.
- **19.21.** Определите разность потенциалов φ_1 - φ_2 между точками 1 и 2 участка цепи, показанного на рис. 19.7. Постройте график зависимости $\varphi(x)$, направив ось 0x от точки 1 к точке 2 и приняв за начало отсчета точку 1. Ток I направлен по оси 0x.

20.РАЗВЕТВЛЕННЫЕ И ЗАМКНУТЫЕ ЦЕПИ

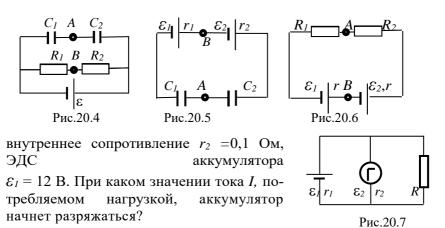
20.1. В цепи, состоящей из источника с ЭДС $\varepsilon = 6$ В и внутренним сопротивлением r = 2 Ом и реостата, идет ток $I_1 = 1$ А. Какой силы I_2 будет ток в цепи, если сопротивление реостата увеличить в n = 2 раза?

- **20.2.** К батарейке с ЭДС $\varepsilon = 3$ В подключили резистор сопротивлением R = 20 Ом и измерили напряжение на резисторе. Оно оказалось U = 2 В. Определить ток I_0 короткого замыкания.
- **20.3.** Если к аккумулятору подключить резистор сопротивлением $R_2 = 4$ Ом, то сила тока в цепи $I_1 = 0,2$ А. Если подключить резистор с $R_2 = 7$ Ом, то $I_2 = 0,14$ А. Определить силу тока I_0 короткого замыкания.

20.4. Два вольтметра, соединенные между собой последовательно и подключенные к батарее, показывают напряжения $U_1 = 5$ В и $U_2 = 3$ В соответственно. При подключении к батарее только первого вольтметра его показания


равны U=6 В. Определить ЭДС ε батареи.

 $r_2 = 3$ Ом. Схема - рис. 20.2.


равны
$$\theta$$
—6 В. Определить ЭДС ϵ батарей. R_1 R_2 E_1 = 1 В, ϵ_2 = 2 В, r_1 = 2 Ом, r_2 = 3 Ом. Схема - рис. 20.1. ϵ_1 = 1 В, ϵ_2 = 2 В, r_1 = 2 Ом, ϵ_2 = 1 В, ϵ_3 = 2 Ом, ϵ_4 = 1 В, ϵ_4 = 2 Ом, ϵ_5 Рис. 20.3

20.7. Цепь состоит из аккумулятора с внутренним сопротивлением r=1 Ом и нагрузки R=5 Ом. Вольтметр, подключаемый последовательно и параллельно к нагрузке, показывает одно и то же. Найти сопротивление вольтметра R_V .

20.8. Значения сопротивлений резисторов (рис. 20.3) $R_I = 1$ Ом, $R_2 = 3$ Ом; ЭДС источника $\mathcal{E} = 4$ В. Найти φ_A - φ_B . **20.9.** Найти φ_B - φ_A (рис. 20.4). $C_I = 0,1$ мк Φ , $C_2 = 0,2$ мк Φ , $R_I = 1$ Ом, $R_2 = 8$ Ом, $\mathcal{E} = 3$ В.

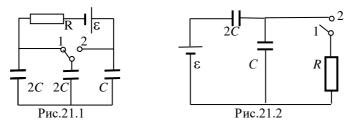
- **20.10.** Найти φ_A - φ_B (рис.20.5). $C_I = 2$ мк Φ , $C_2 = 1$ мк Φ , $\varepsilon_I = 1$ В, $\varepsilon_2 = 2$ В.
- **20.11.** Аккумулятор с внутренним сопротивлением r=2 Ом и ЭДС $\varepsilon=3,5$ В подзаряжается от сети с напряжением U=12 В. Какого сопротивления R надо поставить ограничивающий резистор, чтобы сила тока в цепи не превышала I=1 А? Какое напряжение U_I будет при этом на клеммах аккумулятора?
- **20.12.** Определить φ_A - φ_B (рис.20.6). R_I =1,5 Ом, R_2 = 2,5 Ом, r = 1 Ом, ε_I = 1 В, ε_2 = 2 В.
- **20.13.** Через аккумулятор в конце зарядки течет ток $I_1 = 4$ А. При этом напряжение на его клеммах $U_1 = 12,3$ В. При разрядке того же аккумулятора током $I_2 = 6$ А, напряжение на его клеммах $U_2 = 11,1$ В. Определить силу тока I_0 короткого замыкания.
- **20.14.** Источниками электрического тока в системах электрического оборудования автомобилей (рис.20.7) являются генератор постоянного тока и аккумулятор, соединенный с ним параллельно. Предположим, что ЭДС генератора $\varepsilon_2 = 14$ B, его

20.15. Два элемента с ЭДС, равными \mathcal{E}_1

= 1,5 В и ε_2 = 2 В и соединены одинаковыми полюсами. Вольтметр, подключенный к клеммам батареи, показал напряжение U

- = 1,7 В. Определить отношение r_1/r_2 внутренних сопротивлений элементов. Током вольтметра пренебречь.
- **20.16.** Два аккумулятора с $\varepsilon_I = 1,3$ В и $\varepsilon_2 = 2$ В и внутренними сопротивлениями $r_I = 0,1$ Ом и $r_2 = 0,25$ Ом соединены одинаковыми полюсами. Найти силу тока I в цепи и напряжение U на зажимах аккумуляторов.

- **20.17.** Определить токи I_1 , I_2 , I_3 , идущие через источники с ЭДС $\varepsilon_I = 1$ В и $\varepsilon_2 = 2$ В и через нагрузку сопротивлением R = 1 Ом соответственно, в электрической схеме, изображенной на рис. 20.8. $r_I = 1$ Ом и $r_2 = 2$ Ом.
- **20.18.** Определить разность потенциалов φ_A - φ_B (рис.20.9). ЭДС и внутренние сопротивления батарей указаны на рисунке.
- **20.19.** Найти заряды на конденсаторах C_1 и C_2 в схеме, показанной на рис.20.10. Внутренним сопротивлением источника пренебречь.


21.РАБОТА И МОЩНОСТЬ ТОКА

21.1. Замкнутая цепь состоит из источника тока с ЭДС ε и внутренним сопротивлением r и нагрузки - реостата. При изменении сопротивления реостата изменяется сила тока в цепи. Выразить мощность тока P, выделяемую на нагрузке, как функцию силы тока I. Построить график этой функции. При каком токе I_0 мощность, выделяемая на нагрузке, будет наибольшей? Чему равна $P_{\text{макс}}$? Чему равен КПД источника тока η ? Построить график зависимости $\eta(I)$.

- **21.2.** Замкнутая цепь состоит из источника тока с ЭДС ε и внутренним сопротивлением r и нагрузки реостата. Сопротивление реостата R может изменяться. Написать выражения для силы тока I, напряжения U на реостате, мощности P, выделяемой на нагрузке, полной мощности P_0 и КПД η источника тока в зависимости от R. При каком значении R_0 достигается максимальная мощность на нагрузке? Каков при этом КПД η_0 источника тока? Построить графики зависимости указанных величин от R.
- **21.3.**При подсоединении к источнику тока резистора с сопротивлением $R_I=18$ Ом на нем выделяется мощность P_I =18 Вт, при подсоединении резистора $R_2=3$ Ом мощность $P_2=12$ Вт. Найти силу тока I_0 короткого замыкания.
- **21.4.** При подключении к батарее сначала резистора с сопротивлением $R_I = 18$ Ом, а затем последовательно с ним резистора $R_2 = 64$ Ом КПД возрос в n=2 раза. Определить внутреннее сопротивление батареи r.
- **21.5.** Аккумулятор с внутренним сопротивлением r = 0.08 Ом при токе $I_1 = 4$ А отдает во внешнюю цепь мощность $P_1 = 8$ Вт. Сопротивление нагрузки уменьшают так, что ток становится равным $I_2 = 6$ А. Какая мощность P_2 выделяется при этом на нагрузке?
- **21.6.** Как при параллельном, так и при последовательном соединении двух одинаковых аккумуляторов на внешней нагрузке выделяется мощность $P_1=80~{\rm Bt}$. Какая мощность P_2 будет выделяться на нагрузке, если замкнуть на нее только один из аккумуляторов?
- **21.7.** При поочередном замыкании источника тока на резисторы с сопротивлением $R_1 = 2$ Ом и $R_2 = 18$ Ом во внешней цепи выделяется одинаковая мощность. Найти внутреннее сопротивление r источника тока.
- **21.8.** Параллельно резистору с известным сопротивлением R, подключенному к батарее, включили резистор с неизвестным сопротивлением R_X . Оказалось, что мощность, выделяемая на внешнем участке цепи, не изменилась. Определить неизвест-

ное сопротивление резистора R_X . Внутреннее сопротивление батареи r.

- **21.9.** Электрический чайник имеет две обмотки. При включении одной из них чайник закипает через $t_1=10\,$ мин, при включении другой через $t_2=15\,$ мин. Через какое время чайник закипит, если эти обмотки соединить: а) параллельно; б) последовательно.
- **21.10.** Две лампы с номинальной мощностью $P_1 = 100$ Вт и $P_2 = 60$ Вт, рассчитанные на одинаковое напряжение, соединены последовательно и включены в сеть с напряжением, на которое рассчитаны лампы. Определите отношение количества тепла Q_1/Q_2 , выделяющегося на лампах за равное время.
- **21.11.** Какое количество тепла Q выделится в цепи при переключении ключа K из положения 1 в положение 2 (рис.21.1)?
- **21.12.** Какое количество теплоты Q выделится в резисторе при переключении ключа K из положения 1 в положение 2 (рис. 21.2)?
 - **21.13.** Конденсатор емкости C, напряжение на котором \mathcal{E} ,

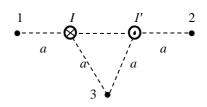
подключается через резистор с большим сопротивлением к батарее с ЭДС 3ε . Определить количество тепла Q, которое выделяется в цепи при зарядке конденсатора до напряжения 3ε ?

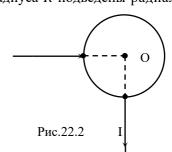
21.14. К концам свинцовой проволоки длиной l=1 м приложено напряжение U=10 В. Какое время τ пройдет с начала пропускания тока до момента, когда свинец начнет плавиться? Начальная температура $t_0=20^{\circ}\mathrm{C}$, температура плавления свинца $t=327^{\circ}\mathrm{C}$, плотность d=11,3 г/см³, удельное сопротивление $\rho=1,7\cdot10^{-7}$ Ом·м, удельная теплоемкость c=0,125 Дж/г·К. Потерей тепла в окружающее пространство пренебречь.

- **21.15.** Линия имеет сопротивление r=300 Ом. Какое напряжение U должен иметь генератор, чтобы при передаче по этой линии к потребителю мощности P=25 кВт потери в линии не превышали 4% передаваемой мощности?
- **21.16.** Электроэнергия генератора мощностью $P_0=25$ кВт передается потребителю по проводам, имеющим сопротивление r=300 Ом. ЭДС генератора равна $\varepsilon=10$ кВ. Определить КПД η линии передачи, т.е. отношение мощности, выделяемой на полезной нагрузке, к мощности генератора. Внутренним сопротивлением генератора пренебречь.
- **21.17.** Во сколько раз следует повысить напряжение источника, чтобы потери мощности (в линии передачи от источника к потребителю) снизить в 100 раз при условии постоянства отдаваемой генератором мощности?
- **21.18.** Определить массу M меди, нужной для устройства двухпроводной линии длиной l=5 км. Напряжение на шинах станции U=2400 В. Передаваемая потребителю мощность P=60 кВт. Допускаемая потеря напряжения в проводах 8%. Плотность меди d=8,9 г/см³, удельное сопротивление $\rho=17\cdot \mathrm{HOM\cdot M}$.
- **21.19.** Аккумулятор подзаряжают от сети с напряжением $U=15~\mathrm{B.}$ ЭДС аккумулятора $\mathcal{E}=12~\mathrm{B}$, внутреннее сопротивление $r=15~\mathrm{Om.}$ Определить, какая часть η мощности, потребляемой от сети, идет на подзарядку аккумулятора. Чему равна эта мошность P?
- **21.20.** Какую массу m нефти нужно сжечь на электростанции, чтобы по телевизору мощностью P=250 Вт посмотреть фильм продолжительностью t=1,5 ч? КПД электростанции $\eta=35\%$. Удельная теплота сгорания нефти q=46 МДж/кг.
- **21.21.** Трамвай массой m=22,5 т движется со скоростью v=36 км/ч по горизонтальному пути. Коэффициент сопротивления $\mu=0,01$, напряжение в линии U=500 В, КПД двигателя и передачи $\eta=75\%$. Определить силу тока I в моторе. С какой скоростью v_I будет двигаться трамвай вверх по горе с уклоном $\alpha=0,03$, потребляя ту же мощность ($\mu=F_{COIIP}/mg$)?

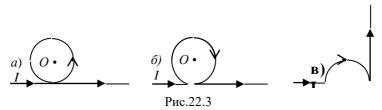
22.МАГНИТНОЕ ПОЛЕ

22.1. Постоянный ток I, текущий по тонкому длинному прямому проводу круглого сечения, создает в вакууме магнитное поле. На расстоянии a=38 мм от оси провода индукция поля $B_0=0,27$ мТл. На таком же расстоянии рас-



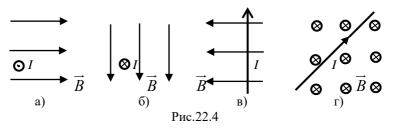

Рис.22.1

полагают второй параллельный провод, по которому течет ток I'=2I в противоположном направлении. Определить индукцию B_1 и B_2 поля в точках 1 и 2 на линии, проходящей через проводники в перпендикулярной им плоскости на удалении a от одного из проводников (рис. 22.1). Найти индукцию B_3 в точке 3, равноудаленной от обоих проводников на расстоянии a.

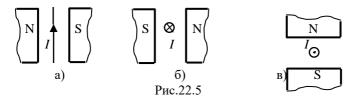

- **22.2.** Два одинаковых круговых витка провода с общим центром расположены во взаимно перпендикулярных плоскостях. Когда по виткам течет одинаковой силы ток, индукция магнитного поля в общем центре витков $B_0 = 0.17$ мТл. Найти индукцию магнитного поля B в той же точке, когда ток прежней силы течет лишь по одному витку.
- **22.3.** Дан плоский замкнутый контур произвольной формы, по которому идет ток. Какое направление имеет вектор индукции магнитного поля в точках, лежащих внутри контура, и в точках, лежащих вне контура?
- **22.4.** Три параллельных прямолинейных проводника большой длины расположены в воздухе на равных расстояниях a=15 см друг от друга. Токи в проводниках одинаковы (I=12 A) по величине и направлены: два в одну сторону, один в противоположную. Найти индукцию B магнитного поля в точке, расположенной на одинаковом расстоянии от всех трех проводников.

66

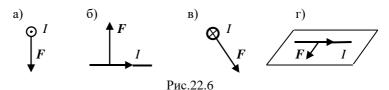
22.5. К проволочному кольцу радиуса R подведены радиально идущие провода, по которым течет ток I (рис. 22.2). Найти величину магнитной индукции B в центре кольца.



- **22.6.** Для проводников, изображенных на рис. 22.3, найти магнитную индукцию B в точке О. По проводникам течет ток I = 1 А, радиус изогнутой части проводника R = 1 см.
 - **22.7.** Маленький шарик с зарядом q = 0.5 мкКл, подвешенный


на нити длиной l=1 м, движется равномерно по окружности в горизонтальной плоскости так, что нить описывает коническую поверхность, образуя угол $\alpha=60^\circ$ с вертикалью. Определить индукцию магнитного поля B в центре окружности, обусловленную движением шарика.

- **22.8.** Определить направление силы взаимодействия тока с магнитным полем (силы Ампера) для случаев, изображенных на рис. 22.4.
- **22.9.** В атоме водорода электрон движется по орбите радиуса $r=0.53 \cdot 10^{-10}$ м. Рассматривая движение электрона по орбите как круговой ток, вычислить индукцию магнитного поля в центре орбиты.
 - 22.10. Определить направление силы, действующей на про-



водник с током в магнитном поле между полюсами магнита, для случаев, изображенных на рис. 22.5.

22.11. Определить направление магнитного поля для каждого из случаев, показанных на рис. 22.6.

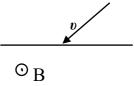
22.12. Проводник с током помещен в однородное магнитное

поле с индукцией B=20 мТл. Определить силу, действующую на этот проводник, если его длина l=0,1 м, сила тока I=3 A, а угол между вектором \vec{B} и направлением тока $\alpha=45^{\circ}$.

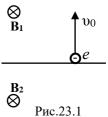
- **22.13.** В горизонтальном однородном магнитном поле с индукцией B=10 мТл подвешен на двух легких нитях горизонтальный проводник длиной l=10 см перпендикулярно вектору \overrightarrow{B} . Как изменится сила натяжения каждой из нитей, если по проводнику пропустить ток силой I=10 A?
- **22.14.** По горизонтальному проводнику длиной l=20 см и массой m=2 г течет ток силой I=5 А. Определить магнитную индукцию B поля, в которое нужно поместить проводник, чтобы он висел, не падая.
- **22.15.** На горизонтальных рельсах, расстояние между которыми l=40 см, перпендикулярно им лежит стержень. Определить силу тока I, которую надо пропустить по стержню, чтобы он начал двигаться. Рельсы и стержень находятся в вертикальном однородном магнитном поле с индукцией B=50 мТл. Масса стержня m=0.5 кг, коэффициент трения стержня о рельсы $\mu=0.01$.
- **22.16.** Стержень лежит перпендикулярно рельсам, расстояние между которыми l=50 см. Рельсы составляют угол $\alpha=30^\circ$ с горизонтом. Какой должна быть индукция B магнитного поля,

перпендикулярного плоскости рельсов, чтобы стержень начал двигаться, если по нему пропустить ток силой I=40 A? Коэффициент трения стержня о рельсы $\mu=0.6$. Масса стержня M=1 кг.

- **22.17.** Проводник длины l=1 м и массы m=50 г подвешен на тонких проволочках в вертикальном магнитном поле индукции B=0,1 Тл. На какой максимальный угол α от вертикали отклонятся проволочки при включении тока силой I=5 А?
- **22.18.** Проводник длиной l=30 см с током силой I=20 А расположен под углом $\alpha=30^\circ$ к однородному магнитному полю с индукцией B=0,4 Тл. Найти работу A, которая была совершена при перемещении проводника на расстояние x=25 см перпендикулярно магнитному полю.
- **22.19.** Плоская прямоугольная катушка из N=200 витков со сторонами a=10 см и b=5 см находится в однородном магнитном поле с индукцией B=0.05 Тл. Какой максимальный вращающий момент L может действовать на катушку в этом случае, если сила тока в катушке I=2 A?


23. ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ

- **23.1.** Протон, ускоренный электрическим полем, влетает в однородное магнитное поле с индукцией B=0,1 Тл перпендикулярно линиям индукции. Ускоряющее напряжение U=20 кВ. Определить радиус R окружности, по которой движется протон в магнитном поле.
- **23.2.** Электрон, ускоренный напряжением $U = 200~\mathrm{B}$, движется в магнитном поле Земли с индукцией $B = 0.07~\mathrm{mTn}$. Найти радиус


R окружности, по которой движется электрон, если скорость его перпендикулярна полю Земли.

- **23.3.** Два электрона с кинетическими энергиями $K_I = 1$ кэВ и $K_2 = 4$ кэВ движутся в магнитном поле, перпендикулярном их скоростям. Определить отношение их периодов обращения и радиусов траекторий.
- **23.4.** Определить частоту обращения ω (циклотронную частоту) частицы массы $m=1,7\cdot 10^{-27}$ кг с зарядом $q=1,6\cdot 10^{-19}$ Кл в магнитном поле с индукцией B=1 Тл.

23.5. Электрон влетает в слой магнитного поля толщиной l=10см. Скорость электрона равна $v=10^6$ м/с и перпендикулярна как линиям индукции B = 10 Тл, так и границам слоя. Под каким углом а электрон вылетит из магнитного поля?

- 23.6. В однородное магнитное поле с индукцией B влетает под углом α к полю со скоростью v частица массы m с зарядом q. Найти радиус R и шаг h спирали, по которой движется частица.
- 23.7. Пространство разделено на две половины плоскостью. В верхней половине создано однородное магнитное поле с индукцией $B_1 = 2$ мТл, а в нижней - с индукцией $B_2 = 1$ мТл. С плоскости раздела перпендикулярно ей начинает движение электрон со скоростью $v_0=10^5 \text{м/c}$ (рис. 23.1). Изобразить траекторию движения

электрона и определить среднюю скорость смещения электрона вдоль границы раздела полей.

- 23.8. Два электрона движутся с одинаковыми по модулю скоростями $v = 10^6$ м/с в однородном магнитном поле. В некоторый момент расстояние между ними равно 2R = 20 нм, а векторы скоростей антипараллельны друг другу и перпендикулярны линиям магнитной индукции. При каком значении индукции поля Bрасстояние между электронами останется неизменным? Устойчива ли система?
- **23.9.** Какова максимальная сила F взаимодействия между двумя протонами, летящими во встречных пучках, если кинетическая энергия каждого $T = 0.5 \text{ M} \rightarrow \text{B}$?
- 23.10. Пространство разделено на две половины плоскостью. В нижней половине создано однородное магнитное поле. К границе раздела подлетает заряженная частица (рис. 23.2). Изобразить дальнейшую траекторию частицы, если эта частица: а) электрон; б) протон.

- **23.11.** Ядро атома неона ускоряется разностью потенциалов U=2 кВ. Найти скорость v ядра. Атомная масса неона A=20, его номер в периодической системе элементов Z=10.
- **23.12.** Пучок электронов, имеющих кинетическую энергию T=10 кэВ, влетает в плоский конденсатор по средней линии. Напряжение на конденсаторе U=40 В, расстояние между пластинами d=1 см, их длина l=10 см. На расстоянии L=20 см от конденсатора находится экран. Начальная скорость электронов параллельна пластинам. Найти смещение пучка x на экране, если напряжение на конденсаторе отключить.
- **23.13.** Узкий пучок электронов с кинетической энергией T=35 кэВ необходимо отклонить на максимальный угол с помощью плоского конденсатора, длина обкладок которого l=12 см, зазор между ними d=10 мм. Определить максимальный угол отклонения и напряжение, которое необходимо подать на конденсатор.
- **23.14.** Элемент атомной батареи (источника тока) представляет собой сферический конденсатор. На внутреннюю сферу нанесен радиоактивный препарат, испускающий α -частицы со скоростью $v=2,2\cdot 10^6$ м/с. Определить ЭДС ϵ этого элемента. Отношение заряда α -частицы κ ее массе $\gamma=4,8\cdot 10^7$ Кл/кг.
- **23.15.** На две плоскопараллельные сетки, к которым приложено напряжение U, падает параллельный пучок заряженных частиц. Угол падения частицы α . При каких энергиях T частицы смогут пройти сквозь сетки, если заряд частицы равен q? **23.16.** Однородное магнитное и электрическое поля направлены
- **23.16.** Однородное магнитное и электрическое поля направлены взаимно перпендикулярно. Напряженность электрического поля $E=0.5~{\rm kB/m}$, а индукция магнитного поля $B=1~{\rm mTn}$. Определить, с какой скоростью v и в каком направлении должен лететь электрон, чтобы двигаться прямолинейно?
- 23.17. Протон и альфа-частица влетают в однородное магнитное поле перпендикулярно линиям индукции. Во сколько раз отличаются радиусы окружностей, которые описывает частицы? Во сколько раз отличаются их угловые скорости, если у частиц одинаковы: а) скорости; б) кинетические энергии?

24.ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

- **24.1.** За время t = 5 мс в соленоиде, содержащем n = 500 витков провода, магнитный поток равномерно убывает с $\Phi_I = 7$ мВб до $\Phi_2 = 3$ мВб. Найти ЭДС ϵ в соленоиде.
- **24.2.** Найти скорость изменения магнитного потока в соленоиде из N=2000 витков при возбуждении в нем ЭДС индукции $\varepsilon=120~\mathrm{B}$.
- **24.3.** Сколько витков n провода должно содержаться в обмотке соленоида с поперечным сечением $S=50~{\rm cm}^2,$ чтобы в ней при равномерном изменении магнитной индукции от $B_0=0,1~{\rm Tn}$ до $B=1,1~{\rm Tn}$ в течение t=5 мс возбуждалась ЭДС индукции $\epsilon=100~{\rm B}$?
- **24.4.** Виток медного провода помещен в однородное магнитное поле перпендикулярно линиям магнитной индукции. Диаметр витка D=20 см, диаметр провода d=2 мм. С какой скоростью изменяется индукция магнитного поля, если по кольцу течет ток силой I=5 А? Удельное сопротивление меди $\rho=1,7\cdot10^{-8}$ Ом·м.
- **24.5.** Показать, что полный заряд, протекающий по замкнутому проводнику при возникновении в нем индукционного тока, не зависит от способа изменения магнитного потока, а зависит только от величины изменения потока и сопротивления проводника.
- **24.6.** В однородном магнитном поле с индукцией B=0,1 Тл расположен плоский виток перпендикулярно к линиям индукции. Виток замкнут на гальванометр. Полный заряд, протекающий через гальванометр при повороте витка, Q=0,01 Кл. На какой угол повернули виток? Площадь витка S=0,1 м³, сопротивление витка R=1,5 Ом.
- **24.7.** При включении магнитного поля, перпендикулярного плоскости витка радиуса R, по витку протек заряд Q. Какой заряд q протечет по витку, если его при неизменном поле сложить восьмеркой, состоящей из двух окружностей, причем радиус меньшей окружности равен R/4? Плоскость восьмерки также перпендикулярна магнитному полю.

- **24.8.** Проволочный виток, имеющий площадь $S=100~{\rm cm^2}$, разрезан в некоторой точке, и в разрез включен конденсатор емкостью $C=10~{\rm mk\Phi}$. Виток помещен в однородное магнитное поле, линии индукции которого перпендикулярны плоскости витка. Индукция магнитного поля равномерно изменяется во времени со скоростью $\Delta B/\Delta t=5~{\rm mTn/c}$. Определить заряд конденсатора q.
- **24.9.** Прямоугольная проволочная рамка со стороной L=15 см находится в магнитном поле с индукцией B=0,01 Тл, перпендикулярном плоскости рамки. По рамке параллельно одной из ее сторон без нарушения контакта скользит с постоянной скоростью v=10 см/с перемычка, сопротивление которой равно R=0,01 Ом. Определить ток I через перемычку. Сопротивлением остальной части рамки пренебречь.
- **24.10.** Прямоугольный контур со скользящей перемычкой длины L=10 см находится в магнитном поле с индукцией B=0,01 Тл, перпендикулярной плоскости контура. В контур включены два резистора одинакового сопротивления R=2 Ом (рис. 24.1). Сопротивление перемычки r=1 Ом, а сопротивление остальных частей контура пренебрежимо мало. Найти ток I в перемычке при ее движении с постоянной скоростью v=1 м/с.
- **24.11.** В однородном магнитном поле с индукцией B=1 мТл рав-номерно вращается проводящий стер-жень с угловой скоростью $\omega=5$ рад/с. Ось вращения стержня совпадает с направлением индукции поля и делит стержень на части $L_1=10$ см и $L_2=20$ см. Найти разность потенциалов $\Delta \varphi$, возникающую между концами стержня.
- **24.12.** В однородное магнитное поле с индукцией *В* помещено металлическое кольцо радиуса *L*, причем его ось совпадает с направлением индукции. От центра к кольцу отходят два проводящих стержня, имеющие контакт между собой и с кольцом. Один стержень неподвижен, а другой вращается

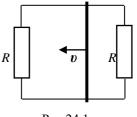
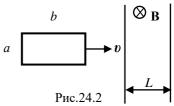



Рис.24.1

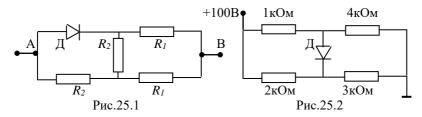
равномерно с угловой скоростью ω . Найти ток I, текущий через стержни, если сопротивление

каждого из них *R*. Сопротивлением кольца пренебречь.

24.13. В однородном горизонтальном магнитном поле с индукцией B = 0.01 Тл расположены вертикально на расстоянии L = 50 см два металлических прута,

замкнутых наверху. По прутьям без трения и без нарушения контакта скользит вниз с постоянной скоростью $v=1\,\mathrm{m/c}$ перемычка массы $m=1\mathrm{r}$. Определить сопротивление перемычки.

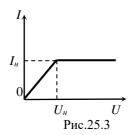
- **24.14.** По двум металлическим стержням, замкнутым проводником и расположенным параллельно друг другу на расстоянии l=0.5 м под углом $\alpha=30^\circ$ к горизонту, скользит железный стержень массы m=10 г. Система расположена в однородном вертикальном магнитном поле с индукцией B=0.1 Тл. Определить установившуюся скорость движения стержня v, если коэффициент трения $\mu=0.5$, а сопротивление контура постоянно и составляет R=0.1 Ом.
- **24.15.** По двум металлическим параллельным рейкам, расположенным в горизонтальной плоскости и замкнутым на конденсатор емкости C, начинает без трения двигаться проводник массы m и длины l под действием силы F. Определить ускорение a проводника. Индукция магнитного поля B вертикальна.
- **24.16.** Прямоугольную рамку, сопротивление единицы длины которой $\rho=1$ Ом/м, перемещают с постоянной скоростью v=10 м/с через область однородного магнитного поля с индукцией B=0,01 Тл (рис. 24.2). Вектор \overrightarrow{B} перпендикулярен плоскости рамки, протяженность области магнитного поля L=4 см, стороны рамки a=5 см, b=15 см. Найти изменение внутренней энергии ΔU рамки.
- **24.17.** В катушке без сердечника за время $\Delta t = 0.01$ с ток возрос от $I_1 = 1$ А до $I_2 = 2$ А, при этом в катушке возникла ЭДС самоиндукции $\varepsilon = 20$ В. Определить поток Φ магнитной ин-


дукции в конце процесса нарастания тока и изменение энергии ΔW магнитного поля катушки.

- **24.18.** Определить ЭДС самоиндукции ε в неподвижной катушке, в которой за время $\Delta t = 0.2$ с энергия магнитного поля уменьшилась в n=4 раза. Индуктивность катушки L=0,16 Γ н, первоначальный ток в катушке I=8 A.
- **24.19.** Катушка индуктивностью L=2 мк Γ н и сопротивлением $R_1=1$ Ом подключена к источнику постоянного тока с ЭДС $\varepsilon=3$ В. Параллельно катушке включен проводник с сопротивлением $R_2=2$ Ом. Ток в катушке отключается. Найти количество теплоты Q, выделившееся из проводника в окружающую среду после разрыва цепи. Сопротивлением источника тока и соединительных проводов пренебречь.
- **24.20.** Две катушки, индуктивности которых $L_1 = 5$ м Γ н и $L_2 = 3$ м Γ н, подключены параллельно через ключи K_1 и K_2 к источнику с ЭДС $\varepsilon = 0.5$ В и внутренним сопротивлением r = 10 Ом. В начальный момент времени оба ключа разомкнуты. После того, как ключ K_1 замкнули и ток через катушку L_1 достиг некоторого значения $I_0 = 30$ мA, замыкают ключ K_2 . Определить установившиеся токи через катушки L_1 и L_2 после замыкания ключа K_2 . Сопротивлениями катушек пренебречь.
- **24.21.** Параллельно соединенные катушка индуктивности L=5 мГн и резистор с сопротивлением R=1 кОм подключены через ключ к батарее с ЭДС $\varepsilon=2$ В и внутренним сопротивлением r=4 Ом. В начальный момент времени ключ K разомкнут и тока в цепи нет. Какой заряд протечет через резистор после замыкания ключа? Сопротивлением катушки пренебречь.
- **24.22.**Кольцо из сверхпроводника радиусом r=5 см и индуктивностью L=1 мк Γ н помещено в однородное магнитное поле, индукция которого нарастает от нуля до $B_0=0.01$ Тл. Плоскость кольца перпендикулярна к линиям индукции магнитного поля. Определить силу индукционного тока I, возникающего в кольце.

25.ЭЛЕКТРИЧЕСКИЙ ТОК В РАЗЛИЧНЫХ СРЕДАХ

- **25.1.** Определить среднюю скорость v направленного движения электронов вдоль медного проводника при плотности постоянного тока j=11 A/mm², если считать, что на каждый атом меди в металле имеется один свободный электрон. Молярная масса меди M=64 г/моль, плотность меди ρ =8,9 г/см³.
- **25.2.** Найти скорость v упорядоченного движения электронов в проводе сечением S=5 мм 2 при силе тока I=10 A, если концентрация электронов проводимости $n=5\cdot 10^{28}$ м $^{-3}$.
- **25.3.** В телевизионном кинескопе ускоряющее анодное напряжение $U=16~\mathrm{kB}$, а расстояние от анода до экрана составляет $l=30~\mathrm{cm}$. За какое время τ электроны проходят это расстояние?
- **25.4.**В диоде электрон подходит к аноду со скоростью $v = 8 \cdot 10^6$ м/с. Чему равно анодное напряжение U?
- **25.5.** Концентрация электронов проводимости в германии при комнатной температуре $n=3\cdot 10^{19}~{\rm M}^{-3}$. Какая доля атомов η германия ионизирована? Плотность германия $\rho=5400~{\rm kr/M}^3$, молярная масса германия $\mu=0{,}073~{\rm kr/моль}$.
- **25.6.** К концам цепи, состоящей из последовательно включенного термистора и резистора сопротивлением R=1 кОм, подано напряжение U=20 В. При комнатной температуре сила тока в цепи была $I_1=5$ мА. Когда термистор опустили в горячую воду, сила тока стала равной $I_2=10$ мА. Во сколько раз k изменилось сопротивление термистора?
- **25.7.** В монокристалл германия был введен фосфор. Его примесь составляет $\eta=10^{-4}\%$ по массе. Какой будет концентрация n носителей заряда, обусловленная введением примеси? Принять, что все атомы фосфора ионизируются. Молярная масса фосфора $\mu=31$ г/моль.


25.8. Определить сопротивление электрической цепи для двух направлений тока (рис. 25.1): а) ток течет от A к B(сопротивление R_{AB}); б) ток течет от B к A (сопротивление R_{BA}). Сопротивления резисторов $R_1 = 30$ Ом, $R_2 = 60$ Ом. В цепь включен идеальный диод Д, т.е. диод, для которого в прямом направлении сопротивление можно считать равным нулю, а в обратном - бесконечно большим.

- **25.9.** Определить ток, текущий через идеальный диод \mathcal{I} в цепи, изображенной на рис. 25.2.
- **25.10.** Количество энергии, достигающей поверхности Земли от Солнца, характеризуется плотностью потока $\Phi = 8,4$ Дж/(см²·мин). Какую площадь S должна иметь солнечная полупроводниковая электрическая батарея мощностью P = 1 кВт? КПД батареи $\eta = 20\%$.
- **25.11.** В случае несамостоятельного газового разряда зависимость тока I через газоразрядную трубку от напряжения U на трубке имеет вид, показанный на рис.25.3.При некотором напряжении на трубке U_H ток через трубку достигает насыщения. Этот ток I_H =100мкА. Если трубка, последовательно

соединенная с некоторым балластным резистором, подключена к источнику тока с напряжением U=2 кВ, то ток через трубку $I_0=5$ мкА. На сколькоб надо изменить сопротивление балластного резистора, чтобы достичь тока насыщения?

25.12. При каком расстоянии d между пластинами площадью по $S=100~{\rm cm}^2$ установится ток насыщения $I=10^{-10}~{\rm A},$

- если ионизатор образует $n=12,5\cdot 10^6$ пар ионов в объеме $V=1~{\rm cm}^3$ за $\tau=1~{\rm c}.$
- **25.13.** Какой должна быть напряженность E электрического поля, чтобы при длине свободного пробега $\lambda=0,5$ мкм электрон мог ионизовать атом газа с энергией ионизации $W=2,4\cdot 10^{-18}~\rm Дж?$
- **25.14.** При электролизе раствора соляной кислоты HC1 на катоде выделилось m=1 г водорода. Какая масса M хлора выделилась за это же время? Молярная масса C1 $_2$ μ =71 г/моль.
- **25.15.** Пользуясь законами электролиза и известным значением числа Авогадро, определить заряд электрона e. Число Авогадро $N_A = 6 \cdot 10^{23}$ моль⁻¹.
- **25.16.** Никелирование металлического изделия с поверхностью $S=120~{\rm cm}^2$ продолжалось t=5 мин при силе тока I=0,3 А. Определить толщину h слоя никеля. Молярная масса никеля $\mu=59~{\rm г/моль},$ валентность никеля Z=2, плотность $d=8800~{\rm кг/m}^3.$
- **25.17.** Какова затрата электроэнергии на получение m=1 кг алюминия, если электролиз ведется при напряжении U=10 В, а КПД установки $\eta=80\%$? Молярная масса алюминия $\mu=27$ г/моль, валентность Z=3.
- **25.18.** При электролизе воды через ванну прошел заряд $q=1000~{\rm Kn}$. Какова температура T выделившегося кислорода, если он находится в объеме $V=0,25~{\rm n}$ под давлением $P=129~{\rm k}\Pi a?$
- **25.19.** В медной ванне за время t = 20 мин выделилось m = 1,98 г меди. Определить мощность P, идущую на нагрев электролита. Сопротивление раствора в ванне R = 0,8 Ом.

ОТВЕТЫ

- 1. Кинематика прямолинейного движения.
- **1.1.** 150 m. **1.2.** $L/(v_1+v_2)$. **1.3.** 15 km. **1.4.** 60 km/ч.
- **1.5**. 6 m/c. **1.6**. 0,72 m/c. **1.7**. 48 км/ч. **1.8**. $\sqrt{v^2 u^2}/v$.
- **1.9.** $(\upsilon_1 l_1 + \upsilon_2 l_2)/(\upsilon_1^2 + \upsilon_2^2)$.**1.11.** 0,22 m/c;0,5 m/c; 8,5 c.
- **1.12.** 8 m/c; 15 c;4 m/c. **1.15.** $t_2 + \sqrt{t_2(t_2 t_1)}$. **1.16.** 24cm; 34cm.
- **1.17.** 1 км. **1.18.** 0.5 m/c^2 ; 36 км/ч.
- 1.19. $\sqrt{2gh+g^2\Delta t^2/4}$; $2\sqrt{2h/g+\Delta t^2/4}$. 1.20. $/H_0-v_0t/$. 1.21.4c.
- **1.22.** $\sqrt{2n/g} \sqrt{2(n-1)/g}$. **1.23.** $2v_0 g\tau$; $v_0(2t-\tau) g\tau t + g\tau^2/2$.
- 2. Кинематика криволинейного движения.
- **2.1.** 11,7 m/c; 59° . **2.2.** 180 m. **2.3.** 1/3. 1 **2.4.** $v_0 t \sqrt{2(1-\sin\alpha)} = 22$ m.
- **2.5.** $v_0 \cos \alpha (\tan \theta)/g = 0.75 \text{ c.}$
- **2.6.** $\sqrt{gL/[2\cos^2\beta(tg\beta-tg\alpha)]}$ =130 m/c. **2.7.** $2\sqrt{2H/g}$ =1,3 c.
- **2.8.** $a=bv_0; x=(b/2v_0)y^2$. **2.9.** 230 m/c. **2.10.** 12.**2.11.** a) $y=-bx^2/c^2;$
- б) $\vec{v} = c\vec{i} 2bt\vec{j}$; $\vec{a} = -2b\vec{j}$; в) $arccos(2bt/\sqrt{c^2 + 4b^2t^2})$. **2.12.**63 с;
- 21 c. **2.13.** (n-1)/n, n=2,3,... **2.14.** 2,8 c. **2.15.** $v=2s/t-v_0=25$ m/c;

$$\sqrt{v^4/R^2 + (v - v_0)^2/t^2} = 0.71 \text{ m/c}^2$$
. **2.16.** 6,3 m/c². **2.18.** $a = v_c^2 R$;

- $v_0 = 2v_c \cos \alpha$. **2.19.** $(v_1 + v_2)/2$; $(v_1 v_2)/2R$.
- 3. Законы Ньютона.
- **3.1.** 2,5 m/c; 6,25 m. **3.3.** F < 0,75 H. **3.4.** a > 2 m/c². **3.5.** 2 m/c²; 8 H.

- **3.6.** 2 m/c²; 8 H; 6 H. **3.7.** 5 m/c²; 7,5 H.
- **3.8.** $t[F(\cos\alpha + \mu\sin\alpha) \mu Mg]/M = 38 \text{ m/c}$. **3.9.** $\arctan \mu = 31^{\circ}$.
- **3.10.** a) 28 кH; б)28 кH; в) 29,4 кH. **3.11.** 1,1 с.
- **3.12.** $g/m_2-m_1(\sin\alpha+\mu\cos\alpha)/(m_1+m_2)=0,42 \text{ m/c}^2$.
- **3.13.** $a_1=2g(2m_1-m_2)/(4m_1+m_2)$; $a_2=a_1/2$; $T=3gm_1m_2/(4m_1+m_2)$.
- **3.14.** $(g+a)(1+\mu)m_1m_2/(m_1+m_2)$; $m_2(g+a)$ при $\mu m_1 > m_2$.
- **3.15.** $(\operatorname{tg}\alpha)(n^2-1)/(n^2+1) = 0.16$. **3.16.** 0.25 H; 0.49 H; 0.49 H.
- **3.17.** $mg\sin\alpha$, $\alpha \le \arctan \mu$; $\mu mg\cos\alpha$, $\alpha \ge \arctan \mu$. **К**рупные.
- **3.19.** $v_0 \rho_0 / (\rho \rho_0)$. **3.20.** 100 H.

4. Динамика криволинейного движения

- **4.2.** 24 кH; 34кH. **4.3.** $[(g-F/m)(1+l^2/4H^2)H/2]^{1/2}=37$ км/ч.
- **4.4.** 147m. **4.5.** $v^2/g \operatorname{tg}\alpha = 5.7 \operatorname{km}$. **4.6.** 8,3 pag/c. **4.7.** $m(v^2/L + g\cos\alpha) =$
- = 2,75 H. **4.8** 78°. **4.9.** 500 H; 375 H. **4.10.** 9,75 m/c^2 . **4.11.** 0,34%.
- **4.12.** 1,4 ч. **4.13.** 8. **4.14.** 2 10³⁰ кг.
- **4.15.** $[G(M_1+M_2)T^2)/(4\pi^2)]^{1/3} = 8.10^{10} \text{m}.$ **4.16.** $3\pi (n+1)^3/(GT^2) =$
- $=2,3\cdot10^3$ KT/M³. **4.17.** 4,3·10⁴ KM. **4.18** 4 KM/c.

5.Закон сохранения импульса

- **5.1.** 0,17 H·c; 0,2 H·c. **5.2.** 2c. **5.3.** 0,87 H; 1,6 H; 1,4 H. **5.4.** 20 MH c.
- **5.5.** 1 m/c. **5.6.** 1 m/c. **5.7.** 1,6 m/c; 3,4 m/c.
- **5.8.** $t_0[\sqrt{M^2 + (m+M)^2} + m]/[\sqrt{2}(m+M)]; t_0[1+m/(2M)].$
- **5.9.** 8,3 cm/c. **5.10.** 160 m/c. **5.11.** 5. **5.12.** $\overrightarrow{v_0} + mM\overrightarrow{u}/(m+M)^2$.
- **5.13.** 8,6 m/c. **5.14.** 0,2 m/c; 15 m/c. **5.15.** 15m/c.
- **5.16.** $\sqrt{p_1^2 + p_2^2 + 2p_1p_2\cos\theta}$. **5.17.** $2v(v_1 + \sqrt{v_1^2 + 2gH})/g = 13$ km.
- **5.18.** $(2 v_0^2 \sin 2\alpha)/g s$.

6. Работа, мощность, энергия

- **6.1.** 2 Дж. **6.2.** $(\mu_1 + \mu_2)Mgl/2$. **6.3.** -174 Дж. **6.4.** 0,3 Дж.
- **6.5.** $[2\Delta x_2/\Delta x_1 + (\Delta x_2/\Delta x_1)^2]A_1 = 0,06$ Дж. **6.6.** 0; $mg(gt-v_0\sin\alpha)$.
- **6.7.** $m(4s^2/t^2+g^2t^2)/8=5,2$ Дж. **6.8.** 183 м/с; 225 м/с. **6.11.** 200 кВт.
- **6.12.** 10 кВт. **6.13.** 83 кВт. **6.14.** 0,02; 46 Вт. **6.15.** 25 кВт.
- **6.16.** 540 Дж. **6.17.** 150 Дж. **6.18.** $m(\upsilon_1^2 \upsilon_0^2 + 2gl\sin\alpha + 2\mu gl\cos\alpha)/2 = 365 Дж.$

7. Закон сохранения энергии

- **7.1.** 16 m/c. **7.2.** $\sqrt{km_2/[m_1(m_1+m_2)]}(l_0-l)=0.32$ m/c; 0.16 m/c.
- **7.3.** $(v^2 + \mu g l)/(2\mu g)$. **7.4.** 2 m. **7.5.** $H(1-\mu \operatorname{ctg}\alpha)/\mu$.
- **7.6.** $-m_1m_2(v_1+v_2)^2/2(m_1+m_2)=-3$ Дж. **7.7.** Соскользнет.
- **7.8.** 34 m/c. **7.9.** $\sqrt{2(n+1)gH/n} = 6.9$ m/c. **7.10.** -3.3 m/c; 1.7 m/c.
- **7.11.** H/2. **7.12.** $2\arcsin[m_1v/2(m_1+m_2)\sqrt{gl}] = 1,5^{\circ}$. **7.13.** 18 кH.
- **7.14.** 2mg(H/R-1-1,5 $\cos\alpha$). **7.15.** 5R/2. **7.16.** $[gR(4\cos^2\alpha/2+\cos^{-1}\alpha)]^{1/2}$. **7.17.** $4x/(I+x)^2$. **7.18.** $E_0/4$. **7.19.** 4,3 Дж.
- **7.20.** mu(u-v), u=2 ($|\Delta E_2|/m$)^{1/2}. **7.21.** 90°.

8. Статика. Гидростатика

8.1. 0,5 H; 1 кН. **8.2.** 1,3. **8.3.** $l\mu/(\mu+1)$. **8.4.** $mg(l+R)/\sqrt{l(l+2R)}$;

$$mgR/\sqrt{l(l+2R)}$$
 . **8.5.** 0,5; $F>mg/2$. **8.6.** $mg\sqrt{h(2R-h)}/(R-h)$.

- **8.7.** 800 H. **8.8.** $arctg[(1-\mu_1\mu_2)/(2\mu_2)] = 39^{\circ}$. **8.9.** 3,3 H. **8.11.** $a/[(R/r)^2-1]$.
- **8.12.** $gSH^2(\rho_B-\rho_J)^2/(2\rho_B)=7.8$ Дж. **8.13.** -2,5 см. **8.14.** 0,38 кг.
- **8.15.** $\rho_1 + (\rho_2 \rho_1)(R^3/r^3)$. **8.16.** 0,19. **8.17.** 1,5 г/см³. **8.18.** 5·10¹⁸ кг.
- **8.19.** $h[1+m/(m_2-m_1)](m+m_1)/m_2=0,45$ M. **8.20.** 74 Γ .
- **8.21.** $H(1-\rho_0/\rho)=1.74$ cm.

9.Основы молекулярной физики

- **9.1.** $3,3\cdot10^{22};\ 3\cdot10^{-26}\ {\rm kr};3\cdot10^{-10}\ {\rm m}.$ **9.5.** $112{\rm k}\Pi a.$ **9.6.** $2\cdot10^6.$
- **9.7.** 2,9 кг. **9.8.** 67. **9.9.** $\rho g h^2 (L-h+2l)/[(L-h)(L+2l)]=51$ кПа.
- **9.10.** 70 кПа. **9.11.** $pT_1(M_1-M_2)/[T(p_1-p_2)=3$ кг. **9.12.** СН₄.
- **9.13.** 0,51кг/м³. **9.14.** 0,5. **9.15.** 190 кПа. **9.16.** 33 кПа; 100 кПа.
- **9.17.** 0,71. **9.18.** 0,27 m. **9.19.** $VMa_x/[p_0S+M(g+a_x)]$.
- **9.20.** $HT_1/h + \mu k(H-h)H/(MR)$.
- 10. Внутренняя энергия. Теплота. Работа.
- **10.1. 9** МДж. **10.2.** 3*nkVT*/2. **10.3.** 220 Дж. **10.4.** 40%.
- **10.5.** 0,05 К. **10.6.** 57 кДж. **10.7.** 110°С. **10.8.** 56 К.

- **10.9.** 100 Дж. **10.10.** $2p_0V_0/T_0$. **10.12.** $(n-1)mRT/(n\mu)$.
- **10.13.** $vR(\sqrt{T_1}-\sqrt{T_2})^2$. **10.14.** 920 кДж/кг·К; 2,6 кДж; 6,6 кДж.
- **10.15.** *mR∆T/µ*; *R/µ*.**10.16.** 1,5 кДж. **10.17.** 200 кПа.
- **10.18.** -12,6 K. **10.19.** 4. **10.20.** $2m_1R(m_1T_1+m_2T_2)/[\mu V(m_1+m_2)]$ = 85 κ Па.
- 11. Закон сохранения энергии в тепловых процессах.
- 11.1. 12,4 кДж; 8,3 кДж; 20,74 кДж. 11.4. 0,3; 400 К.
- **11.5.** 14 M/c. **11.6.** 35,5 T. **11.7.** 2 J. **11.8.** $mgs(\alpha+k+$
- $+2s/t^2$)/ $(\eta \rho q)$ =0,11 π . **11.9.** $(1-\eta)(n-m)/m$ =0,15. **11.10.** 2,7.
- **11.11.** $T_0[1+Mu^2/(3p_0V_0)]$; $V_0[1+Mu^2/(3p_0V_0)]^{-3/2}$.
- **11.13.** $1 n^{1-\gamma} = 0.25$. $1 n^{(1-\gamma)/\gamma} = 0.18$. **11.14.** $1 n^{1-\gamma} = 0.6$.
- **11.15.** 1- $n^{-(1-1/\gamma)}$. **11.16.** 1+ A/RT_2 . **11.17.** 9,3 кДж. **11.18.** 23/21.
- **11.19.** 80 л. **11.20.** 92 г.
- 12. Реальные газы. Насыщенный пар. Конденсация и испарение.
- **12.1.** 89°С. **12.2.** 32 г. **12.3.** 6,2%. **12.4.** 60 мин. **12.5.** 0,64 м.
- **12.6.** 1 кДж. **12.7.** 7,3%. **12.8.** 5,9 г. **12.9.** $v_aRT/p_0 = 15,3$ дм³.
- **12.10.** $\nabla v_a/(v_a+v_b) = 40 \text{ дм}^3$. **12.11.** $\mu(p_0S\Delta h-Mgh)/(RT) = 0.58 \text{ г}$.
- **12.12.** 7,8 г/м³; 46%. **12.13.** 190 кПа. **12.14.** 2,3 кПа.
- **12.15.** 0,77. **12.16.** 0,29. **12.17.** 44 кг. **12.18.** 0,27.
- 13. Жидкости, плавление и кристаллизация. Свойства твердых тел.
- **13.1.** 1,6 мДж. **13.2.** 0,074 Н/м. **13.3.** 0,02 Н/м. **13.4.** 7,3 см.
- **13.5.** 860 Н. **13.6.** 1,46 кН. **13.7.** 3 кг. **13.8.** 15 мкДж. 59 мкДж.
- **13.9.** 60 кДж/кг. **13.10.** 2,7 кг. **13.11.** 0,75 г. **13.12.** 0,12.
- **13.13.** $3 \cdot 10^{16}$ Дж. **13.14.** $m\lambda RT/[p_0(\mu q + RT)]; m\lambda RT/(\mu q + RT).$
- **13.15.** 24 см; 34см. **13.16.** 3,2 м.
- **13.17.** $\Delta l_1/l_1=2\Delta l_2/l_2$; $\Delta l_1=4\Delta l_2$. **13.18.** 7,4 км. **13.19.** 0,4 Па.
- **13.20.** $l(\alpha_1 E_1 \alpha_2 E_2)(T_1 T_2)/(2E_1 + 2E_2)$.
- 14. Электрический заряд. Закон Кулона.
- **14.1.** 9 κH. **14.2.** 23 μH. **14.3.** 4,3·10⁴². **14.4.** 5,4·10⁴; 4,9·10⁻²².
- **14.5.** $8 \cdot 10^{-5}$. **14.6.** $1, 4 \cdot 10^{21}$ H. **14.7.** $2, 2 \cdot 10^{6}$ m/c.
- **14.8.** $Q[1\pm(1-16\pi\varepsilon_0l^2F/Q^2)^{1/2}]/2 = 38\text{MKK}\pi; 12\text{MKK}\pi.$ **14.9.**1,8;
- 0,8. **14.10.** -4q/9; R/3.**14.11.** $(4\pi\varepsilon_0 mgx^3/\sqrt{4l^2-x^2})^{1/2}$ = 5,3 нКл.
- **14.12.** $(Q^2 \sqrt{3} q^2/9)/(4\pi\epsilon_0 l^2)$. **14.13.** 180 H. **14.14.** $-q/\sqrt{3}$.

```
14.15. 0,96Q. 14.16. 0,47 H. 0,20 H. 14.17. 27 MH.
```

14.18.
$$\sqrt{3} q^2/(6\pi\varepsilon_0 m l^2) = 1,04$$
 m/c². **14.19.** $Q > 8\pi\varepsilon_0 m g d^2/q = 5.6$ m κ K π.

15. Напряженность электрического поля.

15.2. 2 cm. **15.3.**
$$3q/(2\pi\varepsilon_0 a^2) = 5.4$$
 kB/m. **15.4.** $qx/[4\pi\varepsilon_0(x^2+R^2)^{3/2}]$.

15.8. 2 MKKJ. **5.9.**
$$|qQ|(m+M)[4\pi\varepsilon_0 E(|q|M+|Q|m)]^{-1/2}=0,37$$
 M.

15.10.
$$Qd/(16\pi^2\varepsilon_0R^2)=76$$
 MB/M. **15.11.** 4,9 c⁻¹; 3,95 c⁻¹.

15.12.
$$0, r < R$$
; $\sigma R^2 / \varepsilon_0 r^2, r > R$. **15.13.** $\rho r / 3\varepsilon_0, r < R$; $\rho R^3 / 3\varepsilon_0 r^2, r \ge R$.

15.14.
$$0, r < R$$
; $\sigma R / \varepsilon_0 r, r > R$. **15.15.** $\rho r / 2\varepsilon_0, r < R$; $\rho R^2 / 2\varepsilon_0 r, r \ge R$.

15.16.
$$\rho x/\varepsilon_0$$
, $x < h/2$; $\rho h/2\varepsilon_0$, $x > h$. **15.17.** $E_A = \rho h/3\varepsilon_0$; $E_B = \rho h/6\varepsilon_0$.

15.18.
$$\rho a/3\varepsilon_0$$
. **15.19.** $\beta=2\alpha=90^\circ$.

16.Потенциал электрического поля.

16.1. 0,16 Дж. **16.2.** 0,14 мДж. **16.3.** -5
$$q^2/(4\pi\varepsilon_0 a)$$
.

16.7. 1,5*bE*= 45 B. **16.9.**
$$q/[4\pi\varepsilon_0\cdot(x^2+R^2)^{1/2}]$$
.

16.10.
$$Q(q_1-q_2)(R^{-1}-(R^2+d^2)^{-1})/(4\pi\varepsilon_0) = -4.5 \text{ M/J}x.$$

16.11. 3,6 kB; 5 kB. **16.12.**
$$q/(4\pi\epsilon_0 R)$$
; $q/(8\epsilon_0 R)$; 0. **16.13.**180 B;

$$0,14 \text{ мкКл/м}^2$$
. **16.14.** $0,5 \text{ м}$. **16.15.** $2\sigma/\varepsilon_0$; σ/ε_0 ; $2\sigma d/\varepsilon_0$.

16.18. 190 B. **16.19.**
$$1,03 \cdot 10^7 \text{ m/c}$$
.

16.20.
$$Z_{He}Z_Ne^2(A_{He}+A_N)/(4\pi\varepsilon_0A_Nr_{MuH})=5,2$$
 M₃B.

16.21.
$$m\omega^2 L^2 (1-b^2)/2 + (mg+qE)(1-b) = 0,17 \text{ Дж}, b = (mg+qE)/m\omega^2 L.$$

16.22.
$$q\sqrt{(n-1)/(8\pi\varepsilon_0 mrn)}$$
 $(1\pm\sqrt{(n+1)/(n-1)})=13$ m/c;-2,25m/c.

16.23.
$$\sqrt{2gh(1-(1-tg\alpha)b)} = 1.98 \text{ m/c}; \ b=q^2/(4\pi\varepsilon_0 mgh^2).$$

17. Проводники и диэлектрики в электрическом поле.

17.1.
$$kQ/r, r > R_3$$
; $kQ/R_3, r > R_2$; $kQ/(r^{-1} + R_3^{-1} - R_2^{-1}), r > R_1$;

$$kQ/(R_1^{-1} + R_3^{-1} - R_2^{-1}), r > 0.$$
 17.2. $2q$, $-q$, q , $2q$. **17.3.** 0.9 H;

800 кВ/м. **17.4.**
$$q^2/[(1-8h^3/(l^2+4h^2)^{3/2})(8\pi\varepsilon_0h^2)]$$
. **17.5.** 6,7 В.

17.6. 3,3 B. **17.7.** 6 kB. **17.8.**
$$(\varphi_1 R_1 + \varphi_2 R_2)/(R_1 + R_2) = 38B$$
;

$$4\pi\varepsilon_0(\varphi_1-\varphi_2)R_1R_2/(R_1+R_2)=0,09$$
 нКл. **17.9.** 0,73 нКл; 0,43 нКл.

17.10. 135 В. **17.11.**
$$Qq/(Q-q)=7.5$$
 мкКл.

17.12.
$$q(R^2/r^2-1)/(4\pi\varepsilon_0 r) = -1,78$$
 kB. **17.13.** $4\pi\varepsilon_0 \varphi R^3/[r(R+r)] =$

- $=5,05\cdot10^{-14}$ Кл. **17.14.** 7,1 нКл/м². **17.16.** 0,8 мкКл. **17.18.** 1,4 Н.
- **17.19.** 1,2 Γ/M^3 . **17.20.** $[\upsilon_0^2 Qq/(2\pi\varepsilon_0 mR)]^{1/2}$.
- **17.21.** $(q_2-q_1)d/(2\varepsilon\varepsilon_0 S) = 4,7 \text{ B}.$

18. Конденсаторы

- **18.1.** 100 В. **18.2.** 80 В; 0,16 мКл; 0,06 мКл; 0,1 мКл.
- **18.3.** 80 B; 40 B. **18.4.** $(C_1U_1+C_2U_2)/(C_1+C_2)=20$ B.
- **18.5.**200 πΦ. **18.6.** 36 мкΦ. **18.7.** 1,4. **18.8.** 1,7.
- **18.9.** $(\varepsilon_1 + \varepsilon_2)\varepsilon_0 S/(2d) = 44 \text{ m}\Phi.$ **18.10.** $\varepsilon_1 \varepsilon_2 \varepsilon_0 S/(\varepsilon_1 d_2 + \varepsilon_2 d_1) = 35 \text{ m}\Phi.$
- **18.11.** 6. **18.12.** 89 пКл. **18.13.** 132 В. **18.14.** 1,5 мкФ.
- **18.15.** $CU(C_2-C_1)/[(C+C_1)(C+C_2)] = 15$ B. **18.16.** 45 MKH.
- **18.17.** 40 мДж. **18.18.** - $C_1C_2(U_2-U_1)^2/[2(C_1+C_2)] = -0.5$ мДж.
- **18.19.** 0,28 нДж. **18.20.** 73 мкК.
- 19.Постоянный ток.
- **19.1.** 0,1 А. **19.2.** 0,2 мг. **19.3.** 100 кА/м². **19.4.** 0,33 мкА.
- **19.5.** 0,02 В/м. **19.6.** 9 Ом. **19.7.** 1,2мА. **19.8.** 6 м. **19.9.** 44.
- **19.10.** $U(1 \pm \sqrt{1-4I_1/I_2})/(2I_1) = 30 \text{ Om}; 10 \text{ Om}.$ **19.11.** 2R.
- **19.12.** 1 B. **19.13.** 101 Om. **19.14.** 90 Om. **19.15.** 1.6.
- **19.16.** 13*r*/8.**19.17.** 3*r*/4. **19.18.** 0,8*r*. **19.19.** 5*r*/6. **19.20.** *U*/(7*r*).
- **19.21.** ε_1 - ε_2 + $I(r_1+R_1+r_2+R_2)$.
- 20. Разветвленные и замкнутые цепи.
- **20.1.** 0,6A. **20.2.** 0,3 A. **20.3.** $I_1I_2(R_2-R_1)/(I_2R_1-I_1R_2)=0,47$ A.
- **20.4.** $UU_2/(U-U_1)=18$ B.. **20.5.** 0,2 B. **20.6.** $(\varepsilon_1 r_2 + \varepsilon_2 r_1)/(r_2 + r_1)=1$,4 B. **20.7.** $R^2/r=25$ Om. **20.8.** -2 B. **20.9.** $\varepsilon C_1/(C_1+C_2)$ -
- $-\varepsilon R_I/(R_I+R_2) = -1.7 \text{ B. } 20.10. \text{ 0. } 20.11. \text{ 6.5 Om; 5.5B.}$
- **20.12.** 0,25 B. **20.13.** $(I_1U_2+I_2U_1)/(U_2-U_1) = 99$ A. **20.14.** 20 A.
- **20.15.** 0,67. **20.16.** 2 A; 1,5 B. **20.17.** 0,2 A; 0,6 A; 0,8 A.
- **20.18.** -18 ε /11. **20.19.** 2 $C_1(\varepsilon_1 \varepsilon_2)$ /3; $C_2(\varepsilon_1 \varepsilon_2)$ /3.
- 21. Работа и мощность тока.
- **21.3.** $\sqrt{P_1P_2} (R_1-R_2)/(R_1\sqrt{P_1R_2}-R_2\sqrt{P_2R_1})=2.5 \text{ A}.$
- **21.4.** 32 Om. **21.5.** 11 Bt. **21.6.** 45Bt. **21.7.** $\sqrt{R_1R_2} = 6$ Om.
- **21.8.** $Rr^2/(R^2-r^2)$. **21.9.** 6 мин; 25 мин. **21.10.** 0,6. **21.11.** $2C\varepsilon^2$;
- 8 $Cε^2$. 21.12. 0,6 $Cε^2$. 21.13. 0,4 $Cε^2$. 21.14. 7,4 c. 21.15. 14 κB. 21.16. 1- $P_0r/ε^2$ = 0,925. 21.17. 10. 21.18. 2 τ.21.19. 0,8; 2,4 BT.
- **21.20.** 84 г. **21.21.** 60 А; 2,5 м/с.

22. Магнитное поле.

- 22.1. 0; 0,40 мТл; 0,47 мТл. 22.2. 0,12 мТл. 22.4. 55 мкТл.
- **22.5.** 0. **22.6.** 83; 43; 21 мкТπ. **22.7.** $\mu_0 q/(4\pi l \sin\alpha) \sqrt{g/l \cos\alpha} =$
- =0,26 пТл. 22.9. 12,5 Тл. 22.12. 4,2 мН. 22.13. 5 мН.
- **22.14.** 0,02 Тл. **22.15.** 2,5 А. **22.16.** $Mg(\mu\cos\alpha\pm\sin\alpha)/Il=0,5$ Тл; 9,6 мТл. **22.17.** 2arctg(mg/Ibl) = 90°. **22.18.** 0,30 Дж.
- **22.19.** 0,1 H·M.

23. Движение заряженных частиц

в электрическом и магнитном полях.

- **23.1.** 0,2 m. **23.2.** 0,68 m. **23.3.** $T_1/T_2=1$; $R_1/R_2=0$,5.
- **23.4.** $0.94 \cdot 10^8$ рад/с. **23.5.** $\arcsin(eBl/mv)$,
- $eBl < /mv; 180^{\circ}, eBl > mv.$ 23.6. $(mv\sin\alpha)/(qB); (2\pi mv\cos\alpha)/(qB).$
- **23.7.** $2v_0(B_1-B_2)/[\pi(B_1+B_2)]=21$ KM/c. **23.8.** 5,6 TJ. **23.9.** 110 H.
- **23.11.** 4.1 km/c. **23.12.** eUl(L+l/2)/(2dT) = 0.5 cm. **23.13.** 18°:
- 3,5 kB. **23.14.** 50 kB. **23.15.** $T>qU/\cos^2\alpha$. **23.16.** 500 km/c.
- **23.17.** a)1/2; 2; 6) 1; 2.

24. Электромагнитная индукция.

- **24.1.** 400 B. **24.2.** 60 MB6/c. **24.3.** 100. **24.4.** $16\rho I/(\pi d^2 D) =$
- =0,54 $T\pi/c$; **24.6.** $arccos(1-RQ/(BS)) = 120^{\circ}$. **24.7.** -Q/2; -3Q/2;
- -3*Q*/8. **24.8.** 0,5 нКл. **24.9.** 0,015 А. **24.10.** 0,5 мА.
- **24.11.** 75 MKB. **24.12.** $B\omega L^2/4R$. **24.13.** $B^2L^2v/(mg)=2,5$ MOM.
- **24.14.** $mgR(\sin\alpha \mu\cos\alpha)/[(\mu\cos\alpha + \sin\alpha)B^2l^2\cos\alpha] = 0.25 \text{ m/c}.$
- **24.15.** $F/(m+CB^2l^2)$. **24.16.** 0,5 мкДж. **24.17.** 0,4 Вб; 0,3 Дж.
- **24.18.** 3,2 B. **24.19.** $RL\varepsilon^2/(2R_0(R_0+R)=6 \text{ MK} \text{Дж}.$
- **4.20.** $(L_2\varepsilon/r + L_1I_0)/(L_2 + L_1) = 37,5$ MA; $(L_2\varepsilon/r L_1I_0)/(L_2 + L_1) = 12,5$ MA. **24.21.** -2,5 MKK π . **24.22.** 78,5 A.
- 25. Электрический ток в различных средах.
- **25.1.** 0,82 mm/c. **25.2.** 0,25 mm/c. **25.3.** $[ml^2/(2eU)]^{1/2} = 4$ Hc.
- **25.4.** 180 B. **25.5.** 6,7·10⁻¹⁰. **25.6.** 3. **25.7.** $\eta \rho_{\Gamma} N_A / \mu = 10^{17} \text{ cm}^{-3}$.
- **25.8.** 20 Om; 82,5 Om. **25.9.** 10 MA. **25.10.** 3,6 M².
- **25.11.** -3,8·10⁸ Ом. **25.12.** 0,25 см. **25.13.** 30 МВ/м. **25.14.** 35 г.
- **25.16.** 0,26 мкм. **25.17.** 37 кВт·ч. **25.18.** 1550 К.; **25.19.** 20 Вт.

Календарный план занятий

Первое полугодие

- <u>1-я неделя.</u> 1. Методика решения задач. Основы векторной алгебры.
 - 2. Кинематика равномерного движения.
- 2-я неделя. 3. Самостоятельная работа.
 - 4. Кинематика прямолинейного равноускоренного движения.
- <u>3-я неделя.</u> 5. Кинематика криволинейного равноускоренного движения.
 - 6. Движение по окружности. Кинематика абсолютно твердого тела.
- 4-я неделя. 7. Основы динамики материальной точки.
 - 8. Силы в механике.
- 5-я неделя. 9. Применение закона Ньютона.
 - 10. Динамика криволинейного движения.
- 6-я неделя. 11. Подготовка к контрольной работе.
 - 12. Контрольная работа №1.
- <u>7-я неделя.</u> 13. Импульс материальной точки.
 - 14. Закон сохранения импульса.
- 8-я неделя. 15. Механическая работа. Мощность.
 - 16. Механическая энергия.
- <u>9-я неделя.</u> 17. Закон сохранения энергии.
 - 18. Закон сохранения энергии и импульса.
- 10-я неделя. 19. Подготовка к контрольной работе.
 - 20. Контрольная работа №2.
- 11-я неделя. 21. Основные понятия молекулярной физики.
 - 22. Идеальный газ.
- <u>12-я неделя.</u>23. Внутренняя энергия.
 - 24. Теплота. Первый закон термодинамики.

- 13-я неделя. 25. Работа и теплота в термодинамических процессах.
 - 26. Тепловые двигатели. Применение законов термодинамики.
- <u>14-я неделя.</u>27. Взаимные превращения жидкости и газа. Плавление и кристаллизация.
 - 28. Контрольная работа №3.
- 15-я неделя. 29. Насыщенный пар. Влажность воздуха.
 - 30. Поверхностное натяжение жидкости.
- 16-я неделя. 31. Зачетное занятие

Второе полугодие

- <u>1-я неделя.</u> 1. Электрический заряд. Закон сохранения заряда.
 - 2. Закон Кулона.
- <u>2-я неделя.</u> 3. Напряжённость электрического поля.
 - 4. Электрическое поле заряженных тел.
- 3-я неделя. 5. Работа электростатических сил.
 - 6. Потенциал электростатического поля
- <u>4-я неделя.</u> 7. Проводники в электрическом поле
 - 8. Электростатическая индукция
- 5-я неделя. 9. Диэлектрики
 - 10. Конденсаторы
- 6-я неделя. 11. Соединения конденсаторов
 - 12. Подготовка к контрольной работе
- 7-я неделя. 13. Контрольная работа № 4
 - 14. Постоянный ток. Сопротивление проводников.
- 8-я неделя. 15. Соединения проводников
 - 16. Источники тока. Э.д.с. источника
- 9-я неделя. 17. Законы Ома..
 - 18. Разветвлённые цепи
- 10-я неделя. 19. Работа и мощность тока.
 - 20. Закон Джоуля Ленца.

- 11-я неделя. 21. Подготовка к контрольной работе.
 - 22. Контрольная работа № 5.
- 12-я неделя. 23. Магнитное поле тока..
 - 24. Сила Ампера.
- 13-я неделя. 25. Сила Лоренца.
 - 26. Движение заряженных частиц в электрическом и магнитном полях
- 14-я неделя. 27. Электромагнитная индукция
 - 28.Э.д.с. индукции в движущемся проводнике
- 15-я неделя. 29. Самоиндукция. Индуктивность.
 - 30. Подготовка к контрольной работе.
- 16-я неделя. 31. Контрольная работа № 6.
 - 32. Электрический ток в металлах и полупроводниках.
- 17-я неделя. 33. Электрический ток в электролитах и газах
 - 34. Зачетное занятие.